| Slide<br>1 | Absorption and Half-life                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                             |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | MBChB 221B<br>Dr Stephen Jamieson<br>Dept of Pharmacology and Clinical Pharmacology<br>Auckland Cancer Society Research Centre                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                             |
| Slide<br>2 | <ul> <li>Learning objectives</li> <li>Understand the physiological determinants of extent and rate of absorption</li> <li>Be able to describe bolus, first-order and zero-order input processes</li> <li>Learn the definition of half-life</li> <li>Be able to describe the time course of drug accumulation during constant rate input and elimination after input stops</li> <li>Appreciate the applications of absorption and half-life concepts to clinical practice</li> </ul>                   |                                                                                                                                                                                                                                                                                                                                                             |
| Slide<br>3 | <ul> <li>Drug absorption</li> <li>Transfer of drug from administration site to the systemic circulation <ul> <li>Requires passage through biological membranes</li> </ul> </li> <li>Drugs administered orally must be absorbed before they can cause their pharmacological effect <ul> <li>Has several barriers to overcome, so absorption is usually delayed and incomplete</li> </ul> </li> <li>A drug that is injected intravenously (IV) is immediately and completely (100%) absorbed</li> </ul> | Drug absorption is the process of drug<br>transfer from the site of administration<br>to the systemic circulation. Oral drugs<br>need to be absorbed across the gut<br>wall and avoid first pass metabolism<br>in the liver before they reach the<br>systemic circulation. IV administered<br>drugs are injected directly into the<br>systemic circulation. |



|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | minimum therapeutic level so will be inactive.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Slide<br>7          | <ul> <li>Extent of Absorption (F)</li> <li>Fraction absorbed (f) <ul> <li>Into portal vein from gut</li> <li>Physicochemistry</li> <li>Small, non-ionised, lipophilic</li> <li>Soluble in gut fluids</li> <li>e.g. theophylline (f = 100%)</li> <li>e.g. gentamicin (f &lt; 5%)</li> </ul> </li> <li>Metabolism/efflux <ul> <li>Enzymes present in gut wall</li> <li>Simvastatin metabolised by CYP3A4 (f ≈ 50%)</li> </ul> </li> <li>Drug transporters <ul> <li>Digoxin effluxed by P-glycoprotein (f = 65%)</li> </ul> </li> </ul> | The extent of oral absorption can be<br>considered in 2 parts. The first part is<br>the fraction of drug absorbed across<br>the gut wall (f). Drugs need to be<br>small, non-ionised and lipophilic to<br>passively diffuse across the gut wall.<br>Some drugs may be transported<br>across the gut wall, while others that<br>do diffuse across the gut wall can be<br>transported out of the cell back into<br>the gut lumen by efflux transporters,<br>such as P-glycoprotein. The gut wall<br>also contains some drug metabolising<br>enzymes, e.g. CYP3A4, which can<br>metabolise drugs and limit their<br>absorption across the gut wall. |
| Slide<br>8<br>Slide | <ul> <li>Extent of Absorption (F)</li> <li>First pass metabolism in liver <ul> <li>Drug absorbed in gut passes through liver before reaching systemic circulation</li> </ul> </li> <li>Hepatic extraction ratio (ER) <ul> <li>Fraction of drug entering the liver that is extracted</li> <li>Dependent on organ clearance and blood flow <ul> <li>e.g. morphine ER = 60%</li> <li>e.g. ethanol ER = 10-70%</li> </ul> </li> </ul></li></ul>                                                                                          | Once the drug has been absorbed<br>across the gut wall it will then travel to<br>the liver, where it must avoid<br>metabolism before it can reach the<br>systemic circulation. The hepatic<br>extraction ratio (ER) is the fraction of<br>drug entering the liver that is<br>extracted. The hepatic extraction is<br>determined both by the blood flow and<br>by the ability of the liver to eliminate<br>the drug (the intrinsic clearance of the<br>liver).                                                                                                                                                                                    |
| 9                   | Extent (F)<br>F = f $\cdot$ (1 - ER )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | called bioavailability. This is the fraction of the administered dose that reaches the systemic circulation. It can be calculated as the fraction absorbed across the gut (f) multiplied by $(1 - ER)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                     | e a morphine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                     | $F = 1 \cdot (1 - 0.6) = 0.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                     | (1 0.0) 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |







![](_page_6_Figure_0.jpeg)

![](_page_7_Figure_0.jpeg)