Slide 1	Absorption Models Using NM-TRAN Nick Holford		
Slide	University of Auckland, New Zealand	1	
2	Absorption		
	Extent of Absorption		
	Rate of Absorption		
Slide 3	Extent (F)	1	The extent of oral absorption can be considered in 2 parts. The first part is the fraction of drug absorbed across the gut wall (f). This describes how much drug gets from the gut into the portal venous system. It is determined in part by
	 Fraction Absorbed (f) into portal vein from gut 		physicochemical properties. Small, unionized molecules e.g. theophylline, are almost completely absorbed across the unit used is large advecting the second
	 – physicochemistry • theophylline (100%) (small,unionized) 		get wait. Large, ionized molecules like gentamicin cross membranes with difficulty and only a small fraction is absorbed across the gut wall. Many drugs
	 gentamicin (< 5%) (large, ionized) metabolism/transport simvastatin (50%?) (CYP3A4) digoxin (65%) (PGP transporter) 		are then metabolized in the gut wall wally drugs are then metabolized in the gut wall (typically by CYP3A4 e.g. simvastatin) and/or transported out of the cell back into the gut lumen (typically by P-glyco-protein e.g. digoxin).
	CNHO Holloid, 2019, al rights reserved.		

Slide		
4	Extent (F) • First Pass Extraction (ER) – drug removed while passing through liver – organ clearance and blood flow • morphine (60%) • ethanol (10-70%)	
Slide	SikkG Holtet 2019, al legits reserved.	
5	Extent (F)	
	F = f · (1 - ER)	
	e a morphipe	
	$F = 1 \cdot (1 - 0.6) = 0.4$	
Slide 6	ObeCl Hollus, 2010, al light roomsd	
	Input Processes	
	Delve	
	BOIUS e d Intra-venous injection	
	• Zero-Order	
	e.g. Constant rate IV infusion	
	First-Order	
	e.g. Intra-muscular injection	
	SNNG Hottord, 2019, all rights reserved.	

Slide 10	Finding \$PK ;Make sure dose i IF (NEWIND.LE.1) ;Remember dose us IF (AMT.GT.0) DOS	the Dose s 0 for each subject DOSE=0 ing AMT E=AMT	NONMEM data files require that the amount of each dose is recorded in the AMT data item only at the time the dose is administered. It is often useful to know the value of the last DOSE. This code shows how to save the DOSE by looking at the AMT data item.
Slide 11	Finding the Tir SPK ;Make sure values IF (NEWIND.LE.1) T DOSE=0 TDOS=0 ENDIF ;Remember dose and IF (AMT.GT.0) THEN DOSE=AMT TDOS=TIME ENDIF ;Time after dose f TAD=TIME-TDOS See also http://www.globomax.com/nor	ne After Dose are 0 for each subject HEN time of dose or every record mem_tip3.htm	
Slide 12	CONC TRADE, 2019, all ages seared.	STHETA (-1,5,0) ; DMAX STHETA (0,100,) ; D50 \$PK FDOSE=1+DMAX*DOSE/(D50+DOSE) F1=FDOSE	Two empirical models are illustrated showing how dose might be used to predict changes in extent of absorption. The model on the right is approximately linear if the effect on bioavailability is small. The model on the left requires an additional parameter to describe a saturable increase in extent of absorption with dose. The maximum extent is 1 + DMAX with 1+DMAX/2 extent at a dose D50.

Slida			Henatic extraction can change with
Slide 13	Mechanistic Rate and Exter Well Stirred Model SDES Systemic circulation conc DCP=A(1)/V Rate in to Portal vein RATEIN=KA*A(2) Portal vein conc SDES Systemic circulation conc CCP=A(1)/V Rate in to Portal vein RATEIN=KA*A(2) Sustemic component Sustemic c		Hepatic extraction can change with concentration delivered to the liver if intrinsic clearance is mixed order in the range of concentrations achieved in the liver during absorption. Under the well stirred model of liver extraction the time changing extraction ratio (ER) can be predicted from the absorption rate and an assume value for hepatic blood flow. CLFO is a parameter describing a first-
	Solve guadratic for CLT	FHEP = 1-ER CL = CLMO + CLFO	order elimination clearance process.
	AXX =KM	:CP	http://pkpdrx.com/holford/docs/rate-
	B = -VMAX + Q $C = -VMAX + Q$ $C = -VMAX + Q$	DADT(1) = FHEP*RATEIN - CL*DCP	dependent-extraction.pdf
	SGNB=1 IF (B.LT.0) SGNB=-1 SQRB =SQRT(B*B-4*AXX*C) D =5*(B+SGNB*SQRB) ISPLUS=1 IF (C/D.LE.0) ISPLUS=0 CLI =ISPLUS*C/D+(1-ISPLUS)*D/AXX	;GUT DADT(2) = -RATEIN	
	(INNIG Hollord, 2019, all rights reserved.		
Slide 14	Two Part Rat Parallel/Seque	te Models ential KOKA	Two part models require the data file to have two dosing records at the time of each actual dose. The first record has a CMT of 1 (the default absorption compartment for a first-order process when using ADVAN2 or ADVAN4) and a RATE of 0. The second record has a CMT of 2 (the default central compartment
	Dose is 100 #ID TIME CMT AMT RATE 1 0 1 100 0 1 0 2 100 -2	.25 ; tlag1 h .1 ; tlag2 h 2 ; tk0 h .5 ; fk0 \$SUBR ADVAN2 \$PK KA=ka D2=tk0 F1=1-fk0 F2=fk0 ALAG1=tlag1 ALAG2=tlag2 ;+tlag1	when using ADVAN2 or ADVAN4) and a RATE of -2. The duration of input (TK0) by the zero-order process into compartment 2 is defined in \$PK by assigning TK0 to the special variable D2. The fraction of the dose absorbed by each process is determined by FK0 (the fraction absorbed by the zero-order process). ALAG1 and ALAG2 are used to estimate the lagtime (if any) for each process. If it is assumed that the zero-order process starts only when the first-order process has started (sequential input) then ALAG2 must be set to the sum of tlag2 + tlag1.
Slide			The sequential linked zero-order then first-
15	$\begin{array}{c} \mbox{Two Part Rat}\\ \mbox{Sequential Lin}\\ When Zero-order becomes First-order IRATE Care Care Care Care Care Care Care Care$	<pre>\$</pre>	order model can be interpreted in a mechanistic way if the concentration in the gut is initially at the solubility limit for the drug. As drug is absorbed and the concentration falls below the solubility limit then the process converts from a zero- order input to a first-order input. Note that ALAG1 (lag time of the first order process) must be equal to TK0 (the duration of the zero-order process) plus any lagtime for the zero-order process. This ensures that the first-order process will take over at the end of the zero-order input. See Holford NHG, Ambros R, Stoeckel K. Models for describing absorption rate and estimating extent of bioavailability: Application to cefetemet pivoxil. J Pharmacokin Biopharm. 1992;20:421-42.
	GNHG Holford, 2019, all rights reserved.		

Slide 22	STHETA SPK 3 ; pop_c1 L/h CL=pop_c1 10 ; pop_v L V =pop_v 1 ; pop_ka h-1 KA=pop_ka 1 ; pop_mth h NT=pop_nt \$SUBR ADVANG TOL=3 SHODEL COMP (GUT) \$DES COMP (GUT) \$DES COMP (GUT) \$DES COMP (CENTRAL) BACK (1) GUT=DOSE*EXP(-KTR*(KTR*(T-TLAST)) DADT (1)=GUT*KTR*(KTR*(T-TLAST))**NT/NFAC - RATEIN DADT (2)=RATEIN - CL*DCP	The code for a single dose transit model involves the use of differential equations and closed form solution to transit through NT transit compartments. It is important that the extent of absorption for the dosing compartment 1 is set to 0 because the actual drug input rate from this compartment is modelled explicitly in DADT(1).
	ENH'G Hallord, 2019, all rights reserved.	
Slide 23	Transit Models Single Dose LOG Version (faster?)	
	<pre>\$THETA \$PK 3 ; pop_cl L/h CL=pop_cl 10 ; pop_v L V =pop_v 1 ; pop_ka h=1 KA=pop_ka 1 ; pop_mth NT=pop_nt 5 ; pop_nt KTR=(NT+1)/pop_mtt SSUBR ADVANG TOL=3 LINEACE LOG(2.5066)+(NT+.5)*LOG(NT)-NT \$MODEL F1=0; Very important! COMP (GUT) COMP (GUT) SDES DCP=A(2)/V RATEIN=KA*A(1) X=KTR*T DADT(1)=EXP(LNDK+NT*LOG(X+0.00001)-X-LNFAC)-RATEIN DADT(2)=RATEIN - CL*DCP</pre>	
	GNHG Hullong, 2019, all rights Issensed.	
Slide 24	STHETA \$PK 3 ; pop_c1 L/h CL=pop_c1 10 ; pop_v L V = pop_v 1 ; pop_mth NT=pop_nt 5 ; pop_nt NT=cop_nt \$SUBER ADVAN9 TOL=3 NFAC= SQRT(2*3.1415)*NT**(NT+0.5)*EXP(-NT) \$SUDEL IF (AMT.GT.0) TDOSE=TIME COMP (GUT) SDES COMP (CENTRAL) DCP=A(3)/V GUT=A(1) RATEIN=KA*A(2) DADT(1)=-KTR*GUT DADT(2)=GUT*KTR*(KTR*(TT-TLAST))**NT/NFAC - RATEIN DADT(2)=GUT*TRTE TLAST=TDOSE	If it can be assumed that absorption is complete within the dosing interval then it is possible to model concentrations arising from multiple doses with a transit time delay after each dose. In this case the first compartment is used to model input from the most recent dose and its extent of bioavailability must be set to 1.