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Learn and Confirm Cycle

 Original idea from GE Box (1966)

 Translated to Drug Development 

Sheiner LB. Learning versus confirming in 

clinical drug development. Clinical 

Pharmacology & Therapeutics

1997;61(3):275-91

 

Sheiner brought the idea of a 
learn and confirm cycle to drug 
development. The basic idea was 
originally devised by George Box 
(a famous statistician) 
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Confirming or Learning?

 Confirming tests the Yes/No Hypothesis

 If the question being asked has a 

Yes/No answer then it is a Confirming

question

 If the question has a How Much answer 

then it is a Learning question

 

Confirming and learning require 
different kinds of answers.  
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Confirming

• Making sure

• Outcome Expected

• Analysis Assumptions Minimized
E.g. Randomized Treatment Assignment

• Questions for Drug Approval
– E.g.

• Does the drug work?

• Can it be used safely in renal failure?

Learning

• Exploration

• Outcome Unexpected

• Assumption rich analysis

–E.g. PKPD model

• Questions for Drug Science

–E.g. 

• How big an effect does the drug have?

• What is the clearance in renal failure?

Confirming or Learning?

Power Bias & Imprecision

 

Confirming answers are Yes or 
No. The rejection of the null 
hypothesis to accept a model 
answers the question ‘Is this 
model better than the other?’. It is 
therefore a confirming question. 
Simulation can be used to define 
the power of a clinical trial to 
reject the null hypothesis. 
Learning answers describe how 
big something is. Estimation of 
model parameters answers 
learning type questions. 
Simulation can be used to learn 
the bias and imprecision of 
parameter estimates. 
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Confidence in Population Models

 How confident can you be in parameter 

estimates?

 Typical statistics

» standard error

» 95% confidence interval

 

Examining the distribution of 
uncertainty in parameter 
estimates is used to identify the 
standard error of the uncertainty 
(imprecision) and calculate a 
confidence interval. 
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The Standard Error Problem

 Standard errors (SE) are not confidence 
intervals (CI)

 CI using SE assumes a model – usually 
normal distribution

 Normal distribution is symmetrical

 What is the problem when using NONMEM?
» Standard errors are asymptotic estimates

– And may be unobtainable even if the model fit is good

» Confidence intervals are often asymmetric

 

The standard error is of no use by 
itself. It can be used to compute a 
confidence interval under the 
assumption that the uncertainty is 
normally distributed. This is 
usually unreasonable for non-
linear model parameters (such as 
Emax). It is common to find 
asymmetry in the uncertainty of a 
parameter. 
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Log Likelihood Profile

 Assume that change in log likelihood 
with different parameter values is Chi-
square distributed

 Fix parameter of interest and refit the 
data

 Find parameter values which change 
log likelihood by CHIINV(1-CI,df=1) e.g. 
3.84 for 95% CI

 

The log likelihood profile method 
does not assume symmetry of the 
parameter uncertainty but it does 
use the likelihood ratio test (LRT) 
based on the change in 
NONMEM objective function 
value to predict the probability of 
the confidence interval. This 
assumption is known to be only 
approximately true (see 
discussion of the randomization 
test). 
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Log Likelihood Profile

Tacrine Potency Parameter

Holford NHG, Peace KE. Results and validation of a population pharmacodynamic model for cognitive effects in Alzheimer 

patients treated with tacrine. Proceedings of the National Academy of Sciences of the United States of America 

1992;89(23):11471-11475
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A log likelihood profile (LLP) is 
illustrated here. The parameter is 
BetaA the potency parameter for 
the effect of tacrine at a dose of 
80 mg/day. The approximate 95% 
confidence interval is shown 
under the assumption of the chi-
square distribution. This LLP was 
obtained using the FO method 
and therefore the actual 95% CI is 
almost certainly wider than shown 
here. 
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Resampling Methods

 Jackknife (Quenouille 1949)

» Used to estimate bias

» Tukey (1958) proposed its use to estimate 

variance

 Bootstrap (Effron 1979)

“A data set of size n has 2n-1 nonempty 

subsets; the jackknife uses only n of them. 

The jackknife may be improved by using 

statistics based on … all 2n-1subsets.”

Shao & Tu 1995
 

Resampling methods have been 
proposed as a means to take 
advantage of the assumption that 
observations in a data set differ 
randomly and it is this random 
difference that gives rise to the 
uncertainty in a parameter. The 
Jackknife method takes subsets 
of the original data and obtains 
estimates of the parameter of 
interest. These are then combined 
to obtain an overall parameter 
estimate to describe the mean or 
the variance. The bootstrap is 
similar to the jackknife but creates 
datasets the same size as the 
original by re-sampling at random 
from the original data. This means 
that the same observation can 
appear more than once in the 
data set. Under the assumption 
that the random component of the 
observation is indeed random 
from observation to observation 
then it does not matter that an 
observation is resampled. The 
bootstrap method means that 
many more random data sets can 
be generated and this opens up 
the possibility to estimate more 
interesting statistics such as 
confidence intervals. 
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Theoretical and Empirical 

Distributions

 Theoretical distribution is based on a 

mathematical model for the distribution 

that might have given rise to the data 

e.g. normal 

 Empirical distribution is derived from 

data

 

It is helpful to distinguish 
theoretical and empirical 
distributions. The bootstrap 
procedure constructs an empirical 
distribution. This is especially 
useful because the theoretical 
distribution may not be known. 
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Bootstrap Methods

 Davison & Hinkley 

1997

 Simulation methods

» Parametric 

» Non-Parametric

 

Davison & Hinkly describe the 
theory and application of 
bootstrap methods. They 
distinguish parametric bootstraps 
which rely on using parametric 
model to simulate data and non-
parametric bootstraps which rely 
on resampling to obtain new 
randomly different datasets from 
original data. 
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Bootstrap Samples

 Parametric Sampling

» Use a parametric model to simulate and 

sample from the theoretical distribution

 Non-parametric Sampling

» Use the data and sample from the 

empirical distribution

 Compute statistics (e.g. 95% CI) from 

the Sample

 

Both the parametric and non-
parametric bootstrap procedures 
can be used to generate samples 
from their respective distributions. 
The parametric method requires a 
full parametric model (e.g. PK 
model with population parameter 
variability and residual 
unidentified variability) while the 
non-parametric method only 
requires an original data set. 
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Non-Parametric Bootstrap
#Data is the empirical dist vector Fhat[] of length NSUB
#Let NBOOT be the number of bootstrap samples

for (i=1; i <= NBOOT; i++ ) { 

#Sample the elements of Fhat NSUB times using a uniform random distribution

for ( j=1; j <= NSUB; j++ ){

jsub=int(NSUB*uran)+1

BS[j] = Fhat[jsub] 

}

#Estimate parameter from the bootstrap sample e.g. the average

Thetastar[i] = average(BS) 

} 

#Describe the distribution of Thetastar e.g. standard error

se = stdev(Thetastar) 

 

The basic bootstrap algorithm is 
shown using awk code. NBOOT is 
the number of bootstrap samples 
requested. This would typically be 
1000 or more to obtain an 
estimate of the 95% confidence 
interval. Fhat is the empirical 
distribution i.e. the original data 
set. BS is a bootstrap data set 
obtained by resampling from Fhat. 
Nsub is the number of subjects. 
Thetastar is a vector of parameter 
estimates. In this case the 
average is computed for each BS 
sample data set. This step in the 
algorithm can be much more 
complex e.g. a NONEMM run 
using the BS data set can be 
used to estimate a full set of 
parameters. 
In the last line of the algorithm a 
meta-analysis procedure is used 
to examine the results in 
Thetastar. In this case the 
standard deviation of the average 
values in Thetastar is used to 
estimate the standard error. The 
same Thetastar array could also 
be used to find the 90% 
confidence interval by looking for 
the values of Thetastar that are 
less than the 5%centile and 
greater than the 95%centile. 
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Resampling for Regression

 Model Based Resampling

» Fit model and then sample 
from residuals

– But problem with 
heteroscedastic error

 Resampling Cases

» Sampling unit is a “case” of 
X,Y pairs

– But distorts original design

» Population analysis samples 
individuals as the “case”

*

10

*

jjj XY  


ijij XXYY 
**

;

 

Davison & Hinckley point out the 
difficulty of sampling random 
observations when doing 
regression. Ideally one would 
sample from the residuals of the 
regression predictions but it there 
is heteroscedasticity then this 
cannot be done simply. The 
alternative is to sample from each 
subject as a ‘case’. This 
preserves the heteroscedasticity 
but distorts the design of the trial 
if there is substantial difference 
from subject to subject in their 
dose and sampling times. It 
seems unlikely that these design 
differences would be important in 
determining the outcome of 
typical PKPD data analyses. 
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WFN nmbs

 Any model/data

» Care with paths for user defined $SUB

 WFN command:

nmbs theopd 1 1000

 Results in theopd.bs directory in theopd.txt

 

Wings for NONMEM has an nmbs 
command to automatically create 
bootstrap data sets and run 
NONMEM models. The only 
restriction is to be sure that any 
paths that exist in $SUB 
recognize that the bootstrap 
NONMEM run is two levels down 
from the parent directory. It is 
usually easier to give a fully 
qualified path for any $SUB user 
defined subroutines. 
The bootstrap results are found in 
the a *.bs folder in a *.txt file. The 
*.txt file has the parameter 
estimates for each bootstrap 
replicate on one line of the file. 
They are tab delimited and can be 
easily read into Excel for further 
analysis. 
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Theophylline Example
Raw Results from 1000 Replications

Successful Runs Sorted on Emax

95% CI for Emax is 155 to 313

#Rep Obj Min Cov POPE0 POPEMAX POPEC50 EMSEX 

1 5793.0 MINIMIZATION_SUCCESSFUL_R_MATRIX_ALGORITHMICALLY_NON-POSITIVE-SEMIDEFINITE_BUT_NONSINGULAR_COVARIANCE_STEP_ABORTED_ABORTED 158 147 8.85 0.754

2 5468.5 MINIMIZATION_SUCCESSFUL_OK 147 216 11 0.891

3 6037.1 MINIMIZATION_SUCCESSFUL_OK 127 230 9.05 0.801

4 5556.8 MINIMIZATION_SUCCESSFUL_OK 137 205 8.91 0.932

5 5400.9 MINIMIZATION_SUCCESSFUL_R_MATRIX_ALGORITHMICALLY_NON-POSITIVE-SEMIDEFINITE_BUT_NONSINGULAR_COVARIANCE_STEP_ABORTED_ABORTED 153 266 15.3 0.817

6 6152.6 MINIMIZATION_SUCCESSFUL_R_MATRIX_ALGORITHMICALLY_NON-POSITIVE-SEMIDEFINITE_BUT_NONSINGULAR_COVARIANCE_STEP_ABORTED_ABORTED 144 255 11.1 0.823

Index Rep Obj Min Cov POPE0 POPEMAX POPEC50 EMSEX 

1 732 5719.6 MINIMIZATION_SUCCESSFUL_OK 148 116 6.64 1.38

2 216 5936.6 MINIMIZATION_SUCCESSFUL_R_MATRIX_ALGORITHMICALLY_NON-POSITIVE-SEMIDEFINITE_BUT_NONSINGULAR_COVARIANCE_STEP_ABORTED_ABORTED 148 121 4.97 1.11

3 169 6002.0 MINIMIZATION_SUCCESSFUL_OK 155 129 5.13 0.963

24 74 5877.8 MINIMIZATION_SUCCESSFUL_OK 133 155 4.27 0.877

25 435 5587.2 MINIMIZATION_SUCCESSFUL_OK 156 155 6.76 0.919

26 337 6094.8 MINIMIZATION_SUCCESSFUL_OK 159 156 5.26 0.879

974 539 5460.3 MINIMIZATION_SUCCESSFUL_R_MATRIX_ALGORITHMICALLY_NON-POSITIVE-SEMIDEFINITE_BUT_NONSINGULAR_COVARIANCE_STEP_ABORTED_ABORTED 148 313 17.9 0.697

975 858 6098.0 MINIMIZATION_SUCCESSFUL_R_MATRIX_ALGORITHMICALLY_NON-POSITIVE-SEMIDEFINITE_BUT_NONSINGULAR_COVARIANCE_STEP_ABORTED_ABORTED 117 313 13.7 0.730

976 675 5492.8 MINIMIZATION_SUCCESSFUL_OK 156 314 19.7 0.640

998 873 5460.5 MINIMIZATION_SUCCESSFUL_R_MATRIX_ALGORITHMICALLY_NON-POSITIVE-SEMIDEFINITE_BUT_NONSINGULAR_COVARIANCE_STEP_ABORTED_ABORTED 136 349 15.8 0.671

999 986 5716.5 MINIMIZATION_SUCCESSFUL_R_MATRIX_ALGORITHMICALLY_NON-POSITIVE-SEMIDEFINITE_BUT_NONSINGULAR_COVARIANCE_STEP_ABORTED_ABORTED 139 358 22.6 0.741

1000 18 5928.1 MINIMIZATION_SUCCESSFUL_R_MATRIX_ALGORITHMICALLY_NON-POSITIVE-SEMIDEFINITE_BUT_NONSINGULAR_COVARIANCE_STEP_ABORTED_ABORTED 139 363 23.9 0.647

 

The theopdsex example is shown 
here. The Raw Results table 
shows the first 6 replications. The 
Successful Runs tables shows the 
same results sorted on the 
POPEMAX value. The lower 2.5% 
centile and upper 97.5%centile 
can be identified from their index 
in the table and the corresponding 
POPEMAX estimates used to 
define the 95% confidence 
interval for Emax. 
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Distribution of Emax (FOCE)
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The bootstrap distribution of 
Emax is shown here. It looks 
reasonably symmetrical and even 
normal in shape. 
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Distribution of EMSex (FOCE)
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When the sex on Emax model is 
used the estimate of the reduction 
of Emax in females is shown 
above. The mode is about 0.75 
which means the typical Emax is 
25% lower in females. Only 3.2% 
of estimates are greater than 1 
which provides strong support 
that this parameter is different inf 
females. 
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NONMEM

Non-Parametric Bootstrap

 $SIMULATION OPTION

BOOTSTRAP=n

With the BOOTSTRAP option, NONMEM does not perform the usual simulation  activity  of  randomly 

creating DV values for a new data set, but rather selects a random set of subjects from an existing 

"template"  data  set (which must already have legitimate DV values).

The BOOTSTRAP number n refers to how many subjects are  to be randomly selected from the data 

set.  Setting -1 means to randomly select as many subjects as are in the data set.  For  example,  if  

400  subjects  are in the simulation template data set, then 400 subjects are randomly selected.  The 

random  source  is, in effect, uniform, because any subject is equally probable.

$PROB theophylline pharmacodynamics

$DATA theopd.dat

$INPUT ID TIME THEO AGE WT SEX RACE DIAG DV

$SIML (20150716) BOOTSTRAP=-1 SUBP=2

$ESTIM METHOD=COND INTER PRINT=0
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WFN nmbsi

 Uses $SIM BOOTSTRAP=-1

 WFN command:

nmbsi theopd 1 100

 Results in theopd%NMDIR% directory in 

theopd.smy

 Bootstrap results are stochastically the 

same with nmbs and nmbsi

 

Wings for NONMEM has an nmbs 
command to automatically create 
bootstrap data sets and run 
NONMEM models. The only 
restriction is to be sure that any 
paths that exist in $SUB 
recognize that the bootstrap 
NONMEM run is two levels down 
from the parent directory. It is 
usually easier to give a fully 
qualified path for any $SUB user 
defined subroutines. 
The bootstrap results are found in 
the a *.bs folder in a *.txt file. The 
*.txt file has the parameter 
estimates for each bootstrap 
replicate on one line of the file. 
They are tab delimited and can be 
easily read into Excel for further 
analysis. 
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Parametric Bootstrap
 Random effects (parameters and residual error) are 

simulated instead of sampling from original dataset

 Fixed effects may use the same covariate distribution 

as original dataset or use simulated covariate 

distribution

 Distribution of bootstrap parameter estimates can be 

used to calculate estimation bias

 “Gold Standard” method for imprecision (confidence 

intervals, standard error)
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What is the Truth?

 Bias:  Easy

» True parameters for fixed and random effects used for simulation

» Compared to bootstrap average estimate

 Uncertainty: Tricky

» 95SE: Standard error describing the 95% bootstrap confidence 

interval for the parameters

» Compared to bootstrap average asymptotic standard error
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NONMEM and Monolix

Estimation Methods
 Parametric Bootstrap

» 100 simulated data sets

» Initial estimates “jitter” x 3 or x 1/3 true value (J3)

 NONMEM

» FOCEI

» AUTO  (SAEM ln mu-transformed)

» A10k1k (like AUTO but 10,000 burnin, 1,000 accumulation)

 Monolix

» SAEM (ln transformed internally)

» p5p2 (500 burnin, 200 accumulation, Auto option)

» A10k1k (like p5p2 but 10,000 burnin, 1,000 accumulation)
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Warfarin PKPD Parameter Bias
Warfarin J3 NONMEM NONMEM NONMEM Monolix Monolix
Method FOCE SAEM SAEM SAEM SAEM
Option INTER AUTO A10k1k p5p2 A10k1k
Parameter TRUE MDL MDL MDL MDL MDL
POP_CL 0.1 -0.09% 0.58% 0.56% -11.8% -11.7%

POP_V 8 17.2% -0.08% -0.10% 9.2% 9.2%

POP_KA 2 222% -4.5% -5.0% 370084% #########

POP_TLAG 1 48% -3.5% -4.5% -19% -18%

RUV_ADD 1 5.6% -1.3% -1.4% 19.1% 19.1%

RUV_PROP 0.1 57.2% 2.0% 2.2% 11.6% 12.0%

PPV_CL 0.316 -4.3% -0.51% -0.51% -17.7% -18%

PPV_V 0.316 57.4% 0.45% 0.40% 57% 80%

PPV_KA 0.316 130% -63% -66% 4.9% 4.9%

PPV_TLAG 0.316 338% -9% -7% 102% 103%

Corr CL V 0.1 0.8% 24% 23% -239% -238%

Average Time sec 10.3 53.5 51.3 42.0 42.4

Max Time sec 51.5 102.5 80.6 82.0 91.0

Success % 100 100 100 98 98
 

MU coding and EXIT for FOCE 
and NONMEM SAEM 
Combined2 error model 
Initial estimates “jitter” x 3 or x 1/3 
true value (J3) 
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Warfarin PKPD Uncertainty
Warfarin J3 NONMEM NONMEM NONMEM NONMEM Monolix Monolix

Method SAEM lnMU FOCE SAEM lnMU SAEM lnMU SAEM SAEM

Option AUTO INTER AUTO A10k1k p5p2 A10k1k

Parameter 95SE SAEM AsymRSE AsymRSE AsymRSE AsymRSE AsymRSE

POP_CL 6% -5% 10% 11% -7.4% -7.2%

POP_V 6% -19% 7% 7% 11.5% 12.7%

POP_KA 29% -47% 171% 36% 46% 45%

POP_TLAG 18% -80% 75% 47% 29% 31%

RUV_ADD 6% -23% 7% 4.0% 3185% 3190%

RUV_PROP 11% 1.4% 43% 36% -28% -28%

PPV_CL 15% -8.5% 5% -2.3% 29.6% 39.8%

PPV_V 12% -6% 28% 27% 643% 647%

PPV_KA 77% 101% 364% 359% -83% -83%

PPV_TLAG 42% -7% 163% 145% 50% 52%

Corr CL V 158%

SE success % 5 100 100 98 98

 

MU coding and EXIT for FOCE 
and NONMEM SAEM 
Combined2 error model 
Initial estimates “jitter” x 3 or x 1/3 
true value (J3) 
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Parametric Bootstrap

Comparison of Estimation

 Based  on parameter and standard error bias the 

FOCE estimation method is better in some cases and 

SAEM is a better method in others

 Both NONMEM and Monolix asymptotic standard 

errors are often poor descriptions of uncertainty 

relative to the bootstrap 95 SE

Holford, N. H. G. (2014). Evaluation of NONMEM and Monolix by Parametric Bootstrap. PAGE. Alicante. 

http://www.page-meeting.org/default.asp?abstract=3143
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Practical Matters

 What if my preferred final model does 

not complete the $COV step?

 What do I do with bootstrap runs that do 

not minimize successfully?

 

With simple data sets it is 
common for nearly all boostrap 
runs to complete successfully. It is 
not usual to run the $COV step at 
the same time because this takes 
extra time and the $COV 
estimates are not as useful as the 
bootstrap estimates of 
uncertainty. However, with more 
complex problems NONMEM may 
finish in a variety of ways these 
include: 1) $COV OK 2) 
Minimization successful but $COV 
failed 3) Minimization terminated 
due to rounding errors 4) Other 
errors eg. Next iteration would 
produce an infinite objective 
function value. 
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Methods

 Original Data set (Matthews et al. 2004)

» 697 patients; 2567 concentrations

 Final Model terminated
» MINIMIZATION TERMINATED DUE TO PROXIMITY OF LAST ITERATION 

EST. TO A VALUE AT WHICH THE OBJ. FUNC. IS INFINITE

Matthews I, Kirkpatrick C, Holford NHG. Quantitative justification for target concentration intervention - Parameter 

variability and predictive performance using population pharmacokinetic models for aminoglycosides. British Journal  of 

Clinical Pharmacology 2004;58(1):8-19

 

A recent publication has used 
bootstraps to obtain confidence 
intervals on parameters for a 
model that terminated with 
‘MINIMIZATION TERMINATED 
DUE TO PROXIMITY OF LAST 
ITERATION EST. TO A VALUE 
AT WHICH THE OBJ. FUNC. IS 
INFINITE’. This model was 
preferred as the final model 
because it expressed a 
pathophysiological reason for why 
some patients have low serum 
creatinine concentrations in 
comparison to their expected 
aminoglycoside clearance. 
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The Final Model Context

 

Model 5 estimates the fractional 
reduction in creatinine production 
rate in patients with serum 
creatinine less than 0.06 mmol/L. 
This was preferred over a similar 
model which empirically the 
serum creatinine to 0.06 if it was 
less than 0.06 (Model 6). Model 6 
converged successfully and had 
similar parameters to Model 5. It 
did not seem reasonable that the 
Model 5 parameter estimates 
should be discarded simply 
because of the termination 
message from NONMEM. 
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Methods II

 Original Data Set

» Bootstrap of final model

» Initial estimates equal to final estimates at 

termination

 Simulated Data Set

» Model identical to Original Data

» Parameters obtained from average of 1055 

bootstrap runs of original data

» Bootstrap of a single simulated data set

 

Bootstraps were performed on the 
original data and also a data set 
obtained by simulating from the 
mean boostrap parameters 
obtained from the original data 
set. 
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Methods III

 Compilers

» Compaq Visual Fortran 6.6  Update C

– F77OPT   =/fltconsistency /optimize:4 /fast

» GNU Fortran (GCC 3.1) 3.1 20020514

– F77OPT   =-fno-backslash –O

 Platform

» Windows 2000

» Dual AMD MP2000

 

Two compilers were compared. 
The Compaq df compiler is 
aggressively optimized while the 
GNU g77 compiler uses default 
optimization. It was expected that 
the GNU compiler might have 
better numerical performance 
while the df compiler would be 
faster. 
All runs were performed on AMD 
MP2000 processors. 
 
 

Slide 
32 

©NHG Holford, 2015, all rights reserved.

NONMEM Termination Type

Data df Data g77 Sim df

Runs 3141 924 3125

SUCCESS 30% 27% 46%

$COV 18% 9% 15%

INF OBJ 9% 12% 10%

 

The two compilers gave broadly 
similar results for the types of 
termination. However, somewhat 
unexpectedly the g77 compiler 
was only able to complete the 
covariance step in half of the runs 
for which the df compiler was 
successful. 
The simulated data set had more 
successful runs  but % lower 
successful $COV. 
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The empirical cumulative 
distribution function for some key 
parameters is shown. It indicates 
that for both the original data (left) 
and simulated data (right) that the 
distributions of the parameters 
from the bootstrap datasets are 
essentially the same. Clinically 
unimportant differences in the 
mean parameter value and in the 
tails are shown but for all practical 
purposes the parameters are 
indistinguishable based on the 
termination type. 
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$COV Error

$COV/BS StDev -1 

COV SXS RND INF

data df THETA -1% 0% 3% 4%

data g77 THETA -6% -5% -5% 2%

sim df THETA -9% -9% -10% -11%

 

The estimated standard error 
obtained from the mean of the 
$COV estimates is compared to 
the standard deviation of the 
boostrap estimates. It shows that 
for all cases the difference is 
small. The simulated data set 
tends to have about a 10% 
underestimate of the true 
(bootstrap) standard error when it 
is computed from $COV. This 
might be expected from the 
asymptotic properties of the 
$COV standard error. 
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Bootstrap 80% Confidence Interval

 BSCI: Empirical

» 10%centile to 90%centile

 BSSE: Asymptotic Normal Distribution

» 1.28*2 * Bootstrap StDev

 BS Asymptotic Error

» (BSSE/BSCI-1)*100

 

A second comparison is made of 
the $COV and bootstrap 
predictions of the 80% confidence 
interval. The bootstrap CI was 
obtained from the 10%centile to 
90%centile values in the 
bootstrap distribution. The 
bootstrap standard error was also 
used to predict a 80% CI based 
on the normal distribution 
assumption. 
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BS StDev

Normal Distribution Assumption

Error

Stats COV SXS RND INF

THETA -21% -23% -21% -21%

Data df OMEGA -23% -21% -20% -20%

SIGMA -19% -22% -23% -22%

THETA -15% -19% -22% -20%

Data g77 OMEGA -19% -22% -20% -19%

SIGMA -22% -23% -23% -15%

THETA -21% -21% -21% -20%

Sim df OMEGA -21% -17% -21% -22%

SIGMA -21% -21% -21% -20%

Average -20% -21% -21% -20%

 

The standard error prediction of 
the 80%CI was consistently about 
20% lower than the bootstrap 
empirical distribution CI. Once 
again this is compatible with the 
asymptotic prediction based on 
using SE. 
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Conclusions

 NONMEM termination status is not a useful 
predictor of parameter reliability when the 
final model is acceptable ‘in context’ 

 Compaq compiler is superior to g77 compiler 
in completing $COV step

 $COV slightly underestimates SE

 SE prediction of parameter confidence 
interval underestimates the empirical 
bootstrap interval

 

In conclusion, for this specific 
data set and model it seems that 
one should not rely on the 
NONMEM termination type as a 
measure of parameter reliability. 
This result may have more 
generalizable application provided 
one is confident that the model is 
a good description of the data and 
is not stuck at a local minimum 
(e.g. by comparison with other 
similar models). 
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