Slide 1	Bootstrap and Confidence Intervals Nick Holford Dept Pharmacology & Clinical Pharmacology	
	University of Auckland, New Zealand	
Slide 2	Learn and Confirm Cycle	Sheiner brought the idea of a learn and confirm cycle to drug development. The basic idea was originally devised by George Box (a famous statistician)
	 Original idea from GE Box (1966) 	
	• Translated to Drug Development Sheiner LB. Learning versus confirming in clinical drug development. <i>Clinical</i> <i>Pharmacology & Therapeutics</i> 1997;61(3):275-91	
Slide 3	Confirming or Learning?	Confirming and learning require different kinds of answers.
	 Confirming tests the Yes/No Hypothesis 	
	 If the question being asked has a Yes/No answer then it is a Confirming question 	
	 If the question has a How Much answer then it is a Learning question 	

Slide 4	Confirming or Learning? Outcome Expected Analysis Assumptions Minimized Eg. Randomized Treatment Assignment e. Ueustions for Drug Approval - E.g. Does the drug work? Obes the drug work? Does the drug work? Dewer Bias & Imprecision	Confirming answers are Yes or No. The rejection of the null hypothesis to accept a model answers the question 'Is this model better than the other?'. It is therefore a confirming question. Simulation can be used to define the power of a clinical trial to reject the null hypothesis. Learning answers describe how big something is. Estimation of model parameters answers learning type questions. Simulation can be used to learn the bias and imprecision of parameter estimates.
Slide 5	 Confidence in Population Models How confident can you be in parameter estimates? Typical statistics standard error 95% confidence interval 	Examining the distribution of uncertainty in parameter estimates is used to identify the standard error of the uncertainty (imprecision) and calculate a confidence interval.
Slide 6	 The Standard Error Problem Standard errors (SE) are not confidence intervals (CI) CI using SE assumes a model – usually normal distribution Normal distribution is symmetrical What is the problem when using NONMEM? Standard errors are asymptotic estimates And may be unobtainable even if the model fit is good Confidence intervals are often asymmetric 	The standard error is of no use by itself. It can be used to compute a confidence interval under the assumption that the uncertainty is normally distributed. This is usually unreasonable for non- linear model parameters (such as Emax). It is common to find asymmetry in the uncertainty of a parameter.

Slide 21]	
21	Parametric Bootstrap		
	 Random effects (parameters and residual error) are simulated instead of sampling from original dataset 		
	• Fixed effects may use the same covariate distribution as original dataset or use simulated covariate distribution		
	 Distribution of bootstrap parameter estimates can be used to calculate estimation bias 		
	"Gold Standard" method for imprecision (confidence intervals, standard error)		
Slide	Levels ratios, air, air gin normal		
22	What is the Truth?		
	a Rigg: Eggy		
	 DIAS. Easy » True parameters for fixed and random effects used for simulation 		
	» Compared to bootstrap average estimate		
	Uncertainty: Tricky		
	» 95SE: Standard error describing the 95% bootstrap confidence interval for the parameters		
	» Compared to bootstrap average asymptotic standard error		
	SMMCF Hotors, 2015 all rotats reserved.		
Slide	NONMEM and Monolix		
23	Estimation Methods		
	Parametric Bootstrap		
	 » 100 simulated data sets bitistic structure in the set of the second (2) the second		
	» Initial estimates jitter x 3 or x 1/3 true value (J3)		
	NONMEM » FOCEI		
	 AUTO (SAEM In mu-transformed) Addidle (ilite AUTO but 40,000 burgin 4,000 pressure interv) 		
	 A LOK IK (like AU LO but 10,000 burnin, 1,000 accumulation) 		
	Monolix SAEM (In transformed internally)		
	 » p5p2 (500 burnin, 200 accumulation, Auto option) » A10k4k (like p52 but 10 000 burning 1 000 accumulation) 		
	· ATORIN (like pope but 10,000 buttill, 1,000 deculturation)		
	KNHKI Holfort, 2015, all rights reserved.		

Slide								1	MU coding and EXIT for FOCE		
24		f or i i o		ם חו					and NONMEM SAEM		
	vvar	Tarin	PKF	U Pa	arame	eter E	sias		Londined2 error model		
	Warfarin J3		NONMEM	NONMEM	NONMEM	Monolix	Monolix		true value (.13)		
	Method		FOCE	SAEM	SAEM	SAEM	SAEM				
	Option		INTER	AUTO	A10k1k	p5p2	A10k1k				
	Parameter	TRUE	MDL	MDL	MDL	MDL	MDL				
	POP_CL	0.1	-0.09%	0.58%	0.56%	-11.8%	-11.7%				
		8	17.2%	-0.08%	-0.10%	9.2%	9.2%				
	POP_KA	1	100/	-4.5%	-5.0%	10%	1.99/				
	RUV ADD	1	40% 5.6%	-5.5%	-4.5%	-19%	-10%				
		0.1	57.2%	2.0%	2.2%	11.6%	12.0%				
	PPV CI	0.316	-4.3%	-0.51%	-0.51%	-17.7%	-18%				
	PPV V	0.316	57.4%	0.45%	0.40%	57%	80%				
	PPV KA	0.316	130%	-63%	-66%	4.9%	4.9%				
	PPV TLAG	0.316	338%	-9%	-7%	102%	103%				
	Corr CL V	0.1	0.8%	24%	23%	-239%	-238%				
	Average Time	sec	10.3	53.5	51.3	42.0	42.4				
	Max Time	sec	51.5	102.5	80.6	82.0	91.0				
	Success	%	100	100	100	98	98				
	CNHG Holford, 2015, all rights reserved.							1			
Slide									MU coding and EXIT for FOCE		
25									and NONMEM SAEM		
	l W	arfa	rin Pl	KPD	Unce	rtain	tv		Combined2 error model		
	Manfaulte 12				hometra	Maria di s			Initial estimates "jitter" x 3 or x 1/3		
	Wartarin J3								true value (J3)		
	Ortion	SAEIVI INIVI	UFUCE			SAEIVI	SAEIVI				
	Detion	AUTO		AUTO	AIUKIK	p5p2					
		95SE SAEN		ASYMRSE 10%	ASYMRSE	ASYMRSE 7 49/	AsymRSE 7.2%				
		6%	-5%	70/	70/	-7.4%	-7.2%				
		20%	-19%	1710/	26%	11.5%	12.7%				
	POP TIAG	10%	-47 /6	75%	17%	20%	21%				
	RUV ADD	6%	-60%	73%	47%	29%	2100%				
		11%	1.4%	43%	36%	-78%	-28%				
	PPV CI	15%	-8.5%	5%	-2.3%	29.6%	39.8%				
	PPV V	12%	-6%	28%	27%	643%	647%				
	PPV KA	77%	101%	364%	359%	-83%	-83%				
	PPV_TLAG	42%	-7%	163%	145%	50%	52%				
	Corr CL V	158%									
	SE success	%	5	100	100	98	98				
	CNHG Holford, 2015, all rights reserved.										
Slide								_			
		_									
20		Par	ame	tric B	ootst	rap					
		omr	ariso	on of	Estin	natio	n				
	 Base 	ed on p	aramete	r and sta	ndard erro	or bias th	e				
	FOC	E estim	ation me	ethod is b	etter in so	ome case	es and				
	SAE	M is a b									
	 Both 	NONM	EM and								
	erro	rs are of	ften poor								
	relat	ive to th									
	Holford, N. H. G. (2014). Evaluation									
	http://www.page-	meeting.org/defa	ult.asp?abstract=	3143							
	CNHG Holford, 2015, all rights reserved.										

Slide 27	 Practical Matters What if my preferred final model does not complete the \$COV step? What do I do with bootstrap runs that do not minimize successfully? 	With simple data sets it is common for nearly all boostrap runs to complete successfully. It is not usual to run the \$COV step at the same time because this takes extra time and the \$COV estimates are not as useful as the bootstrap estimates of uncertainty. However, with more complex problems NONMEM may finish in a variety of ways these include: 1) \$COV OK 2) Minimization successful but \$COV failed 3) Minimization terminated due to rounding errors 4) Other errors eg. Next iteration would produce an infinite objective function value.
Slide 28	Methods Original Data set (Matthews et al. 2004) » 697 patients; 2567 concentrations • 697 patients; 2567 concentrations • Final Model terminated • MINIMIZATION TERMINATED DUE TO PROXIMITY OF LAST ITERATION EST. TO A VALUE AT WHICH THE OBJ. FUNC. IS INFINITE Mathews I, Kirkpatrick C, Holford NHG. Quantitative justification for target concentration intervention - Parameter variability and predictive performance using population pharmacokinetic models for aminoglycosides. British Journal of Clinical Pharmacodogy 2004;89(1):8-19	A recent publication has used bootstraps to obtain confidence intervals on parameters for a model that terminated with 'MINIMIZATION TERMINATED DUE TO PROXIMITY OF LAST ITERATION EST. TO A VALUE AT WHICH THE OBJ. FUNC. IS INFINITE'. This model was preferred as the final model because it expressed a pathophysiological reason for why some patients have low serum creatinine concentrations in comparison to their expected aminoglycoside clearance.
Slide 29	Model number Size Model CPR Model Model components 1 Weight Age, Sox Age, Sox Grar 52884 -5683 5 3 Weight Age, Sox Age, Sox Age, Sox Grar 52884 -5683 5 5 Weight Age, Sox Age, Sox Age, Sox Grar 52884 -5683 5 3	Model 5 estimates the fractional reduction in creatinine production rate in patients with serum creatinine less than 0.06 mmol/L. This was preferred over a similar model which empirically the serum creatinine to 0.06 if it was less than 0.06 (Model 6). Model 6 converged successfully and had similar parameters to Model 5. It did not seem reasonable that the Model 5 parameter estimates should be discarded simply because of the termination message from NONMEM.

Slide 30	 Original Data Bootstrap o Initial estim termination Simulated D Model ident Parameters bootstrap ru Bootstrap o 	Method a Set f final model ates equal to f ata Set tical to Original obtained from uns of original f a single simu	Bootstraps were performed on the original data and also a data set obtained by simulating from the mean boostrap parameters obtained from the original data set.
Slide 31	 Compilers Compaq V F770PT GNU Fort F770PT Platform Windows Dual AME 	Method Visual Fortra - =/fltconsiste ran (GCC 3 - =-fno-backs 2000 D MP2000	Two compilers were compared. The Compaq df compiler is aggressively optimized while the GNU g77 compiler uses default optimization. It was expected that the GNU compiler might have better numerical performance while the df compiler would be faster. All runs were performed on AMD MP2000 processors.
Slide 32	Runs SUCCESS \$COV INF OBJ	Data df 3141 30% 18% 9%	The two compilers gave broadly similar results for the types of termination. However, somewhat unexpectedly the g77 compiler was only able to complete the covariance step in half of the runs for which the df compiler was successful. The simulated data set had more successful runs but % lower successful \$COV.

Slide 36		\$CC	\$COV DV/BS	Error StDe	v -1			The estimated standard error obtained from the mean of the \$COV estimates is compared to the standard deviation of the boostrap estimates. It shows that for all cases the difference is
			COV	SXS	RND	INF		small. The simulated data set tends to have about a 10% underestimate of the true (bootstrap) standard error when it
	data	df THETA	-1%	0%	3%	4%		is computed from \$COV. This might be expected from the asymptotic properties of the
	data	g77 THETA	-6%	-5%	-5%	2%		
	sim d	f THETA	-9%	-9%	-10%	-11%		
	GNHG Holford, 2015, all rights rese	rved.						
Slide 37	BC • BS • BS • BS • BS • S • BS • BS	SCI: Empi 10%centile SSE: Asyr 1.28*2 * Bo S Asympto (BSSE/BS		A second comparison is made of the \$COV and bootstrap predictions of the 80% confidence interval. The bootstrap CI was obtained from the 10%centile to 90%centile values in the bootstrap distribution. The bootstrap standard error was also used to predict a 80% CI based on the normal distribution assumption.				
38		Norm	BS S al Distribut Err	tDev ion Assur or	nption			the standard error prediction of the 80%Cl was consistently about 20% lower than the bootstrap empirical distribution Cl. Once again this is compatible with the asymptotic prediction based on
		Stats	cov	SXS	RND	INF		using SE.
		THETA	-21%	-23%	-21%	-21%		
	Data d	f OMEGA	-23%	-21%	-20%	-20%	-	
		SIGMA	-19%	-22%	-23%	-22%	-	
	Date -		-15%	-19%	-22%	-20%	-	
	Data g		-19%	-22%	-20%	-19%	-	
			-22 /0	-23 /0	-23 /0	-10%		
	Cim 4		-21%	-21%	-21%	-20%	-	
	Sin u	SIGMA	-21/0	-17/0	-21/0	-22 /0		
		Average	-21%	-21%	-21%	-20%	-	
		Average	-20%	-21%	-21%	-20%	J	
	©NHG Holford, 2015, all rights rese	rved.						

