


Slide 3	Problem 1 Questions 3-5 3. Her sodium valproate concentration is 0 mg/L. What are the possible explanation(s) for this? 4. Would she benefit from anticonvulsant	 Q3: Most likely cause is poor compliance. Others include sample mix up at the lab, trough conc below the limit of quantitation at the lab which may be erroneously interpreted as 0. Q4: A generalized seizure is serious health event. Anti-convulsant treatment is the first line choice. Q5: Phenytoin, carbamazepine, lamotrigine. Brain surgery for seizure control is a last resort.
	medication? 5. What treatment options are readily available?	Smith PEM. Initial Management of Seizure in Adults. N Engl J Med. 2021;385(3):251-63.
Slide 4	 Problem 1 Question 6-7 Susan refuses to take carbamazepine because when she used it as a teenager it caused nausea. She developed a rash when she tried lamotrigine. You both agree to initiate phenytoin. 6. Should you give her a loading dose? Why/why not? 7. What route and dose would you give to Susan? Phenytoin is available in 30mg and 100mg capsules and also as an intravenous injection solution. 	Q6: A loading dose is essential in order to reach the target concentration rapidly. A maintenance dose regime may take 2 weeks to reach steady state. Q7: The intravenous rate is quicker and usually preferred. IV infusion must be slow with BP and ECG monitoring. If monitoring is not possible then an oral loading dose may be used. The reliability of giving an oral loading dose has been documented here: http://www.aliem.com/trick-of-the- trade-rapid-oral-phenytoin-loading- in-the-ed/
Slide 5	Problem 1 Answer 7 Loading Dose Her predicted Ideal Body Weight (IBW) is 54 kg and her Fat Free Mass (FFM) is 50.6 kg. FFM may be a better predictor of fat mass ie. total weight minus FFM but IBW was used for this volume formula. Volume of phenytoin per kg is moderately higher in obese patients (ipid partition of phenytoin) Volume = 0.7 L/kg x (54 + 46 x 1.33) kg = 81 L Loading Dose = Volume x Target Concentration Loading Dose = 81 L x 10 mg/L = 810 / 0.95 mg (oral bioavailability 95%) = 85 z mg (oral) = 8 x 100 mg capsules	Abernethy DR, Greenblatt DJ. Phenytoin disposition in obesity. Determination of loading dose. Arch Neurol. 1985;42(5):468-71. "Phenytoin loading dose should be calculated on the basis of IBW plus the product of 1.33 times the excess weight over IBW. Very obese individuals will require large absolute loading doses of phenytoin to rapidly achieve therapeutic drug concentrations." IBW Males = 52 kg + 1.9 kg per inch over 5 feet height IBW Females = 49 kg + 1.7 kg per inch over 5 feet height Fat free mass is preferable to ideal body weight today because it separates non-fat mass from fat mass. FFM is calculated from sex, weight (kg) and height in metres (htm). FFM=WHSMAX*htm^2*weight/(WH S50_*htm^2+weight) IF (SEX="F") THEN; female WHSMAX=37.99 WHS50=35.98 ELSE; male WHSMAX=42.92 WHS50=30.93 ENDIF

		Janmahasatian S, Duffull SB, Ash S, Ward LC, Byrne NM, Green B. Quantification of lean bodyweight. Clin Pharmacokinet. 2005;44(10):1051-65.
Slide 6	Problem 1 Answer 7 Maintenance Dose Maintenance Dose Rate = Clearance x Target Concentration "Clearance" = Vmax / (Km + Conc) Assume 'functional body weight' of 70 kg for elimination Vmax= 7 mg/kg/d = 490 mg/d Km = 4 mg/L "Clearance" = 490 mg/d / (4 mg/L + 10 mg/L) = 35 L/d MDR = 35 x 10 mg/L (IV) = 360 mg/d (practical dose) Most people are started on a typical dose of 300 mg/d	There is no published information on the relationship between phenytoin Vmax and body composition. Based on a fat free mass of 54 kg a women with normal body composition would have about 20% fat so her total body weight if she was not obese is predicted to be 68 kg. For simplicity we might assume her 'functional body weight' is 70 kg.
Slide 7	 Problem 1 Questions 8-10 8. How can the effectiveness of this treatment be measured? 9. What would be the value of measuring phenytoin concentration? When? 	 Q8: The lack of occurrence of seizures in the short term cannot be used to measure effectiveness. Measurement of drug concentration is a surrogate for effectiveness if concentrations are at the target concentration. Q9: In the acute setting after a loading dose concentrations are very valuable for dose individualization. A measurement should be made 1 hour after the end of the phenytoin infusion. Further measurements at 3 days and 7 days will indicate if concs are rising or falling towards a new steady state. This will be helpful in deciding if the maintenance dose should be decreased or increased.

Slide 8	 Problem 1 Questions 10-11 10. You measure the serum concentration after 1 month on 360 mg/day in the middle of the dosing interval. The reported concentration is 7.5mg/L. Should the dose be increased? 11. A year later Susan sees you because she has had 2 seizures in the last month. Once again the phenytoin concentration is 7.5 mg/L. In order to achieve a plasma concentration of 15mg/L should the dose be increased to 720 mg/day? 	Q 10: Many patients will have effective seizure control at concentrations between 5 and 10 mg/L. Some clinicians would not change the dose but simply wait to see what happens. Q 11: The occurrence of 2 seizures at a concentration of 7.5 mg/L means this concentration is not adequate for seizure control. A widely used acceptable range is 10- 20 mg/L which suggests a practical target of 15 mg/L.
Slide 9	Problem 1 Answer 12	
	Maintenance Dose	
	Rate Out = MDR = Vmax x Css / (Km + Css)	
	MDR = 490 mg/d x 15 mg/L / (4 mg/L + 15 mg/L)	
	= 386 mg/d	
	= 386/0.95 mg/d = 407 mg/d	
	= 400 mg/d	
	Css = MDR *Km/(Vmax – MDR)	
	If MDR > Vmax then steady state is not possible	
Slide		
10	Problem 2	
	On a dose of 400 mg/day her repeat phenytoin	
	concentration was 12mg/L and Susan remains seizure free for 14 months.	
	Then she re-presents to hospital with another seizure. She has a fever and when she wakes up she complains of	
	dysuria and flank pain. She is febrile, tachycardic and her blood pressure is 80/60 [previously 110/70]; she has marked	
	tenderness over her right kidney; her urine microscopy shows a large number of white blood cells and bacteria. Her	
	predicted creatinine clearance is 100 mL/min. You decide to treat her with gentamicin.	

Slide 11	 Problem 2 Question 1 and 2 1. What loading dose will you give her? The initial target concentration is 20 mg/L (peak after first dose) Volume of distribution is 0.25 L/kg in a normal size person. 2. What initial maintenance dose would you give her? The steady state target concentration is 3 mg/L (average concentration). Her creatinine clearance is 100 mL/min. 	
Slide 12	Problem 2 Answers 1 & 2Loading Dose = Volume x Target Concentration $= 0.25 L/kg \times 70 kg \times 20 mg/L$ $= 17.5 L \times 20 mg/L$ $= 350 mg$ $= 360 mg (4.5 mL of 80 mg/mL)$ Maintenance Dose Rate= Clearance x Target Concentration $= [100 mL/min * 60/1000] \times 3 mg/L$ $= 6 L/h \times 3 mg/L$ $= 18 mg/h$ Maintenance Dose $= 18 mg/h \times 24 h$ $= 400 mg per day$ $= 400 mg per day (5 mL of 80 mg/mL)$	Gentamicin is hydrophilic and does not distribute into fat cells as well as into non-fat tissues. The volume of distribution when body composition is normal is 0.25 L/kg. Susan's 'functional body weight' can be used to predict her volume of distribution. Creatinine clearance is a direct prediction of gentamicin clearance that is based on total body weight. It accounts for differences in body composition.
Slide 13	Problem 2 Question 3 2. Should you measure a gentamicin concentration? If so, when?	Because of unpredictable differences between people it is advisable to measure concentrations and predict the individual clearance of gentamicin. Recommended times are 1 h after the start of the first infusion dose (to allow distribution to tissues) and 8 h after the first dose (when concentration is still measurable).

