Slide		
Slide 1	Drug metabolism MBChB 221B Dr Stephen Jamieson Dept of Pharmacology and Clinical Pharmacology Auckland Cancer Society Research Centre	
Slide 2	 Learning objectives Understand why drug metabolism is important Learn the major drug metabolism reactions Appreciate the potential role of drug metabolism in drug-drug interactions and toxicity Learn the major CYP enzymes and at least one clinically relevant substrate for each 	
Slide 3	 What is drug metabolism Metabolism is the biotransformation of drugs Enzyme-catalysed chemical change to the drug molecule; either building molecule up or breaking down Biotransformation reactions typically generate more polar metabolites Most drugs are lipophilic Enhance excretion through urine or bile Metabolites less likely to diffuse into cells 	Most drugs are lipophilic and will not be renally excreted, as the fraction of drug that is filtered in the glomerulus will be reabsorbed back into the bloodstream. For elimination from the body, these drugs are generally metabolised into more polar metabolites that can then be excreted from the body in the urine (or the bile).

Slide 10	 Describe sites of drug metabolism Liver Major site of drug metabolism First pass metabolism of oral drugs (e.g. morphine) May necessitate dosing by other routes Intestinal wall CYP450 enzymes Gl tract Gut bacteria and proteases Plasma Esterases (prodrug activation) Lungs Metabolism of aerosol sprays 	Microflora in the gut may encounter non-absorbed drug and metabolise it, assisting with absorption. Some drugs are administered as ester prodrugs to enhance their absorption. Esterases in the plasma can then metabolise the ester and release the active drug.
Slide 11	 Metabolism reactions Oxidation Add oxygen atom through loss of electrons (H*) Typically catalysed by CYPs, FMO, oxidases and dehydrogenase enzymes Reduction Add H* with or without loss of oxygen atoms Hydrolysis Water molecule is added to compound, usually resulting in bond cleavage Conjugation Addition of endogenous substrate to increase molecular mass, polarity, water solubility Glucuronidation, sulphation, acetylation, methylation, glutathionylation Asingle drug may be metabolised by multiple routes and by multiple enzymes Any enzyme can be a drug metabolising enzyme 	Historically drug metabolism reactions have been referred to as phase I (e.g. oxidation, reduction, hydrolysis) and phase II (conjugation) reactions with phase I reactions involved in inactivating the drug and unmasking a molecule so that phase II reactions can occur and promote the excretion of the metabolite. Many textbooks still refer to metabolism reactions in this way. However, these terms are outdated. The so-called phase I reactions don't always inactivate drugs, while conjugation reactions don't always follow oxidation, reduction and hydrolysis reactions or necessarily enhance the excretion of the drug.
Slide 12	 Cytochrome P450 enzymes Superfamily of metabolising enzymes 57 human CYP genes across >20 families CYP families 1-3 are predominantly involved in drug metabolism Most common drug metabolising enzymes Catalyse oxidation reactions 5 isoforms metabolise approx 90% of drugs CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4 Most common reaction is a monooxygenase reaction Requires O₂, NADPH and cytochrome P450 reductase Drug + O₂ + H⁺ + NADPH → oxidised drug + H₂O + NADP⁺ 	The most important oxidative enzymes are the CYP450 family. The CYPP450 enzyme system is responsible for the metabolism of over 50% of drugs used clinically. Often also called the 'microsomal mixed function oxidase' family. These are haem proteins that sit within liver cells, mostly associated with endoplasmic reticulum with a few associated with mitochondria. CYPs oxidise a large variety of drugs but also oxidise a number of endogenous substances, particularly steroid hormones, fatty acids and prostaglandins.

Slide 13	 CYP-mediated drug metabolism Some drugs inhibit CYPs and other drug-metabolising enzymes Prevent the metabolism of itself or co-administered drugs Increased toxicity Reduced activation of prodrugs The expression of some CYP enzymes can be upregulated by environmental factors or drugs Enhance the metabolism of other drugs Reduced activity Increased levels of toxic metabolites Function of CYP enzymes differs amongst individuals Differences in gene expression Genetic polymorphisms 	The activity of drug metabolising CYP enzymes can be altered (inhibited or induced) by drugs or environmental factors, while variability in CYP function exists between individuals through differences in gene expression or genetic polymorphisms. Any change in CYP activity (through induction/inhibition or interindividual variability) can result in altered drug concentrations and potentially increased toxicity (if drug levels are increased) or reduced activity (if drug levels are decreased).
Slide 14	 Important CYP isoforms CYP1A2 Clinically relevant substrates: theophylline, caffeine Drug interactions: cimetidine (inhibition); tobacco, bbq meat, cruciferous veges (induction) CYP2E1 Clinically relevant substrates: ethanol, paracetamol Drug interactions: chronic ethanol consumption increases CYP2E1 expression 	An example of a CYP1A2 drug drug interaction is in patients who smoke being treated with theophylline. Smoking can induce CYP1A2 so greater doses of theophylline, a CYP1A2 substrate, are required to have the same effect as in non- smokers. This can be problematic if the patient stops smoking and the dose isn't adjusted (Kroon, Am J Health-Syst Pharm 64:1917-1921, 2007). For CYP2E1, high ethanol intake can induce CYP2E1 activity and promote metabolism of paracetamol to its toxic metabolite. Need very high doses of paracetamol before this becomes an issue.
Slide 15	Important CYP isoforms • CYP2D6 - Clinically relevant substrate: debrisoquine, tricyclic antidepressants (amitriptyline), codeine - Drug interaction: fluoxetine (inhibition) - Over 100 allelic variants	Genetic polymorphisms exist in CYP2D6 that have different phenotypes in their ability to metabolise drugs. This leads to inter- individual variability in drug concentrations and drug activity.

Slide 19	 Important CYP isoforms CYP3A4 Major enzyme for ~ 30% of drugs currently on the market Major enzyme in liver, intestines, also in kidney, lung, placenta and uterus Clinically relevant substrates: erythromycin, simvastatin, felodipine Genetic polymorphisms exist but don't lead to significant interindividual variability Drug interaction: Erythromycin, grapefruit juice (inhibition) Rifampicin, St John's wort (induction) 	CYP3A4: the most common drug metabolizing enzyme. Genetic polymorphisms are rare but drug drug interactions (e.g. grapefruit juice and the oral contraceptive pill) are common.
Slide 20	 Conjugation reactions Addition of endogenous substrate to drug or metabolite Increases molecular mass, polarity, water solubility Facilitates excretion through bile or urine Typically terminates biological activity Exception: Morphine-6-glucuronide is more active Glucuronidation is a major pathway Often follow on from a CYP-catalysed reaction but not all drugs require prior metabolism (Outdated) concept of phase I & phase II reactions Less prone to drug-drug interactions and genetic polymorphisms due to large capacity and overlapping substrate specificity 	Enzyme induction/inhibition and genetic polymorphisms are much less common with conjugation reactions. These reactions have a large capacity, as the enzymes involved don't just catalyse the metabolism of drugs, but also many endogenous substances, so saturation is unlikely. Some drugs do inhibit conjugation enzymes, but in most cases this won't lead to drug drug interactions as multiple conjugation enzymes often catalyse the same reaction so if the activity of one enzyme is reduced (through inhibition or interindividual variability), another enzyme can metabolise the drug instead.
Slide 21	Tamoxifen biotransformation $(+ + + + + + + + + + + + + + + + + + +$	A single drug may be metabolised by multiple different enzymes, many of which can catalyse the same reaction (e.g. tamoxifen metabolism)

