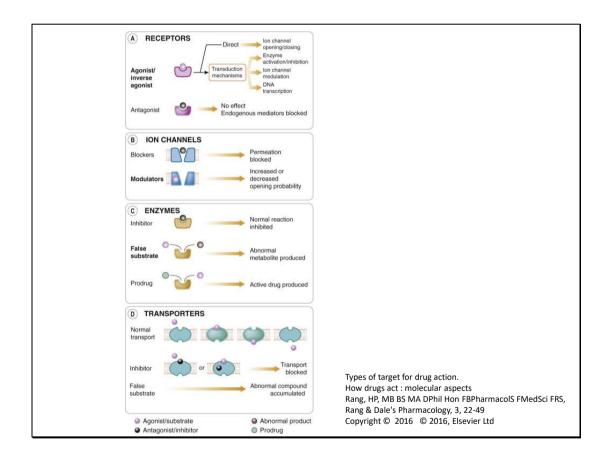
How do drugs work? Mechanism of Drug Action and Drug Targets

Liam Anderson Senior Tutor (Pharmacology) I.anderson@auckland.ac.nz

Learning Objectives

By the end of this lecture you should be able to:

- 1. Describe the potential drug targets within a human body
- 2. Describe the role of receptors, enzymes, ion channels and transporters in drug action
- 3. Understand how drugs bind to receptors, and define the principles of affinity, efficacy and potency
- 4. Understand the concentration/dose-response curve and what information can be gained from it

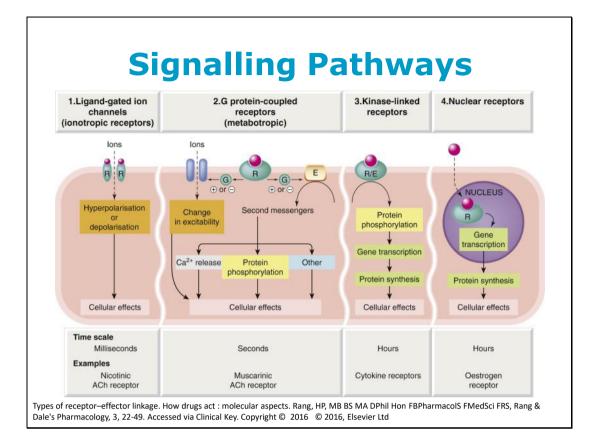

Learning Objectives

By the end of this lecture you should be able to:

- 5. Differentiate between inverse agonism, agonism and antagonism
- Differentiate between different types of antagonism and understand their impact on the concentration/dose-response curve
- 7. Define the term selectivity and explain its relevance to drug therapy
- 8. Describe receptor plasticity and explain its clinical relevance

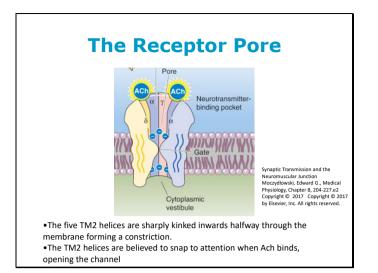
Mechanism of Drug Action

- Most drugs produce their effects by **binding** to protein molecules. Drug binding often leads to a conformational change in the protein. Four primary drug targets are:
 - Ion channels.
 - Enzymes.
 - Carrier molecules.
 - Receptors.
- Important exceptions are cytokines (ligand targeted by mAbs) and DNA (antitumour and antimicrobials)



Receptors

- Proteins which specifically recognise a particular neurotransmitter/hormone and upon binding undergo a conformation change leading to activation/inhibition of cell signalling.
- Four main families of receptor:
 - Ligand Gated Ion Channels (Ionotropic receptors)
 - G-protein coupled receptors
 - Tyrosine kinase/cytokine receptors
 - Nuclear/Steroid Hormone Receptors


Receptor Terminology

- Affinity: attraction of a ligand (drug) for a receptor
- Efficacy (intrinsic activity):
 - Maximum effect = 1
 - No effect = 0
- · Agonists have affinity and efficacy (mimics)
- <u>Antagonists</u> have affinity but <u>no</u> efficacy (prevents)

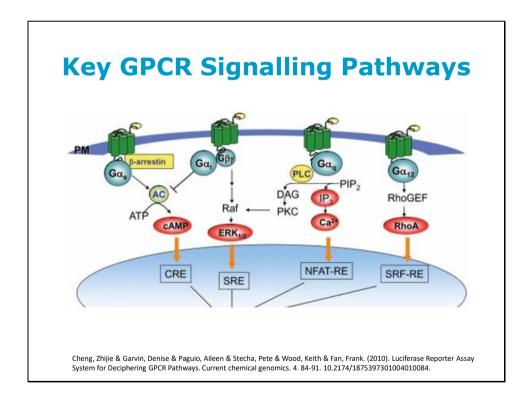
Ligand Gated Ion Channels

- Mediate fast signal transmission at synapses (action occurs in a fraction of a millisecond)
- All are multi-subunit complexes
- All have three important properties:
 - They are activated in response to specific ligands
 - They conduct ions through the otherwise impermeable cell membrane
 - They select among different ions

The Receptor Pore

- Ion conductivity is highly selective, and determined by • amino acids in TM2.
- Most excitatory neurotransmitters (ACh, Glutamate) cause an increase in Na+ and K+ permeability.
- The inside of the cell therefore becomes more positive (depolarised) and has an increased probability for an action potential.

Ionotropic Receptors As Drug Targets


• **GABA**_A – benzodiazepines and barbiturates (sedation and anxiolytic effects), flumazenil.

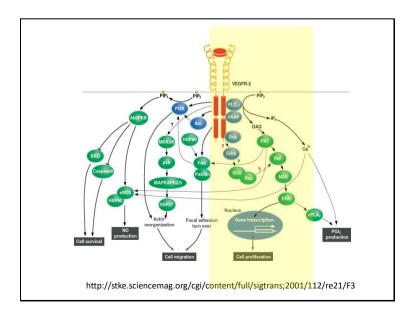
• Glutamate – ketamine (anaesthetic). Major target for neuroprotection and anti-convulsants, but to date all compounds have shown major adverse effects Fig. 45.3 Model of benzodiazepine/GABA_A-receptor interaction. Anxiolytic and hypnotic drugs Ritter, James M., DPhil FRCP HonFBPhS FMedSci, Rang & Dale's Pharmacology. 45, 556-579 Copyright © 2020 © 2020, Elsevier Ltd. All rights reserve (predominantly hallucinations)

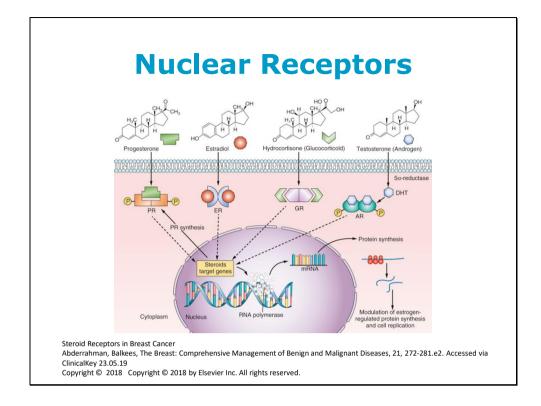
Break

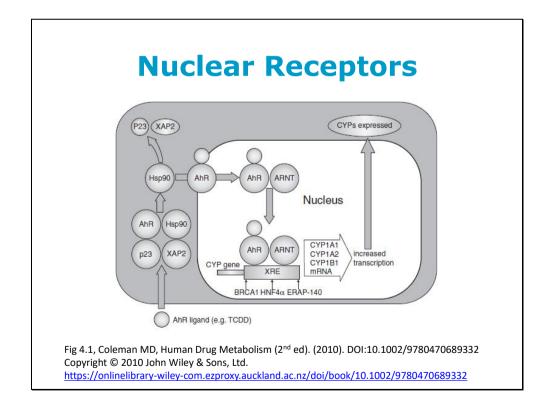
- Where in the body are the ionotropic receptors we've covered?
- Why are they important in these areas?

Clinical condition	Drug	References [‡]	Potential therapeutic uses of		
Alzheimer's disease Cognitive impairment	$M^{}_{1^{*}}, M^{}_{5}$ or mixed $M^{}_{1}/M^{}_{5}$ agonist; $M^{}_{2}$ antagonist§	51,52,54–56, 58,69			
Sjögren's syndrome	M_1, M_3 or mixed M_1/M_3 agonist	15,25,114	Nature Reviews Drug		
Schizophrenia Parkinson's disease Type 2 diabetes Obesity Peptic ulcer disease ¹ OAB, COPD	M_1, M_4 or mixed M_1/M_4 agonist	18,74,75	Discovery 6, 721-733 (2007) doi:10.1038/nrd2379		
	M_1, M_4 or mixed M_1/M_4 antagonist	14,18,22,72			
	M_3 agonist (peripherally acting)	29			
	M_3 antagonist (centrally acting)	16,129			
	M ₃ or mixed M ₃ /M ₅ antagonist	116,117			
	M ₃ antagonist	27,94,95,101			
Irritable bowel syndrome Gastrointestinal spasms	$\rm M_{3}$ or mixed $\rm M_{2}/\rm M_{3}$ antagonist	15,28,105-110			
Antinociception	M₄ agonist	26			
Wound healing	M ₄ agonist, M ₃ antagonist	121			
Cerebrovascular insufficiency	M _s agonist	19,69			
Drug addiction and withdrawal	M _s antagonist	83-85			
pharmacological data (see tex acetylcholine receptor (mACh several pharmacological studi enhance cognition in experim complete lack of M, receptors "Note that pirenzepine and tel	es of the indicated agents are based on gen t for details). "Note that only studies dealin RR mutant mice have been included in this ies suggest that M, receptor-preferring ant ental animals ^{0,0,0,0} , studies with M2R ⁻⁺ mice h is associated with cognitive deficits (see ter ienzepine, two M, receptor-preferring antag disease in Europe, Japan and Canada. COPD ; OAB, overactive bladder.	g with muscarinic able. ⁵ Although agonists can ave shown that the ct for details) ⁵⁹ . Jonists, are used for			

Tyrosine Kinase Receptors

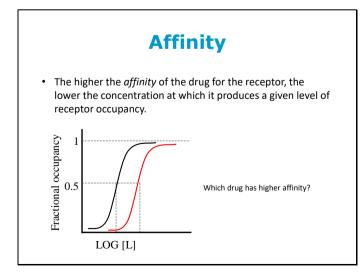

- Receptor functions as an enzyme that transfers phosphate groups from ATP to tyrosine residues on intracellular target proteins.
- Tyrosine kinase receptors mediate the actions of growth factors, cytokines and certain hormones (eg insulin).

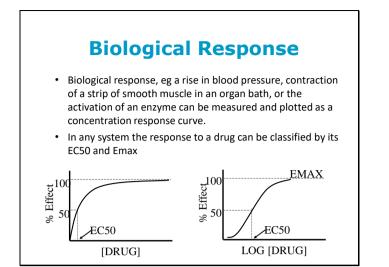

Vascular Endothelial Growth Factor Receptors

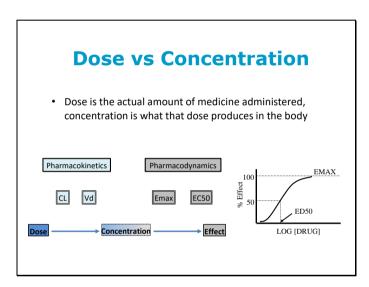

- Essential for angiogenesis during development, pregnancy, wound healing
- Also in pathophysiological conditions eg cancer, rheumatoid arthritis, cardiovascular disease.
- Multiple receptors/multiple ligands, we will look briefly at VEGFR2

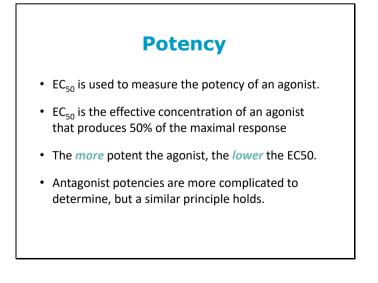
VEGFR2

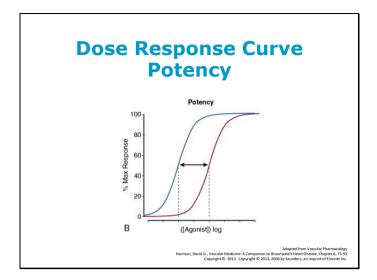
- Ligand stimulated receptor dimerisation
- Autophosphorylation of tyrosine residues in cytoplasmic domain
- Associates with SH2 domain proteins
- Activation regulates a multitude of biological functions
 - Endothelial cell survival
 - Endothelial cell proliferation
 - Endothelial cell migration
 - NO and PGI2 production
 - Increase vascular permeability

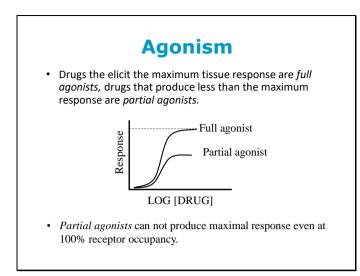


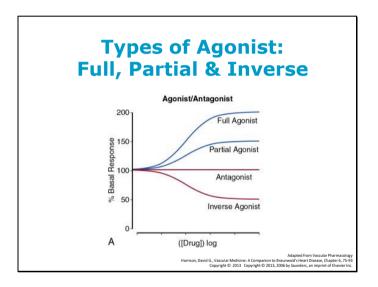

Break


- Describe the potential drug targets within a human body
- Describe the role of receptors, enzymes, ion channels and transporters in drug action


How do drugs bind to receptors?

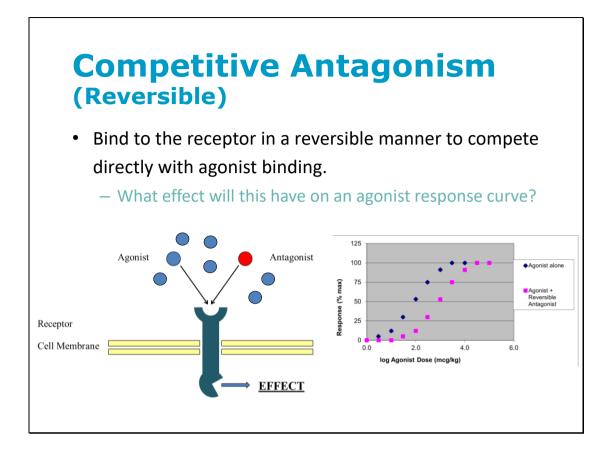

- Van der Waals forces weak forces
- Hydrogen binding stronger
- Ionic interactions between atoms with opposite charges, stronger than hydrogen, weaker than covalent
- Covalent binding essentially irreversible

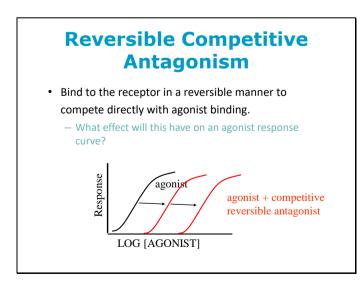


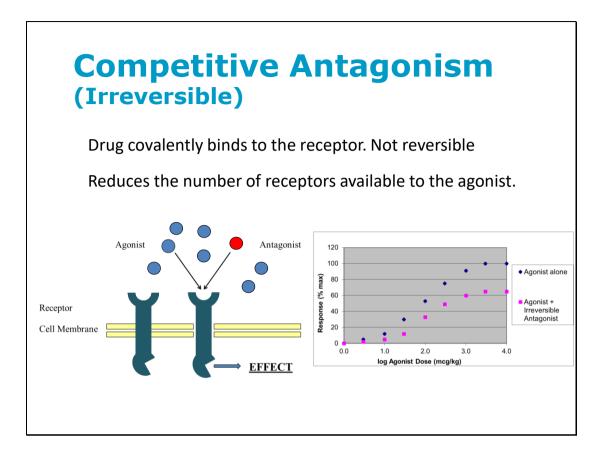

Affinity vs Biological Response

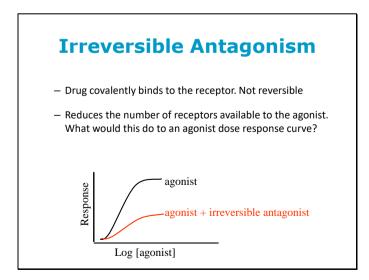
- Concentration response curves are not a good measure of affinity because the relationship between receptor occupancy and response is not strictly proportional :
 - considerable amplification may exist it may only take a low level of receptor occupancy to cause a maximal response in some tissues.
 - Many factors downstream from the receptor binding may interact to produce the final response.

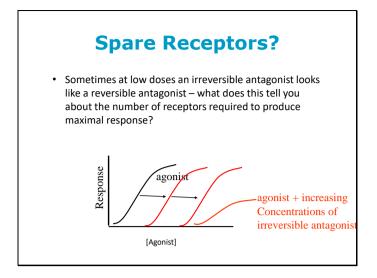
Efficacy

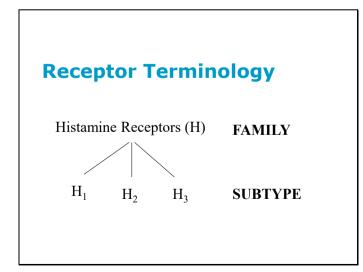

- The ability of a drug to bind to a receptor and cause a change in the receptor's action is termed "efficacy" and measured by Emax
 - A drug with positive efficacy will activate a receptor to promote cellular response - AGONISTS
 - A drug with negative efficacy will bind to receptors to decrease basal receptor activity - *INVERSE AGONIST*
 - A drug with no efficacy will bind to the receptors but have no effect on activity –ANTAGONIST (what would the effect of this be?)






Antagonists


- A compound that binds to but does not activate (or inactivate) the receptor.
- Antagonists have affinity but NO efficacy.
- Defined by how they bind to the receptor...



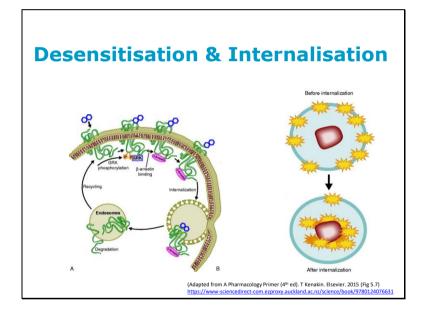
Break

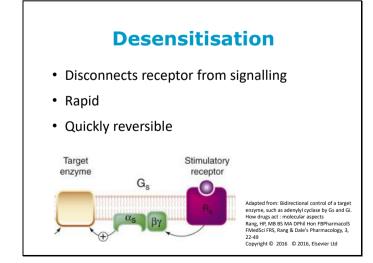
- Construct your own summary table for the types of antagonism
 - What are their key properties?
 - How are they similar?
 - How are they different?
- Which type of antagonist is likely to be the most commonly used? Why?
- Which type of antagonist is least likely to be commonly used? Why?

Selectivity for Subtypes

- Preferential binding to a certain <u>subtype</u> leads to a greater effect at that subtype than others
 e.g. salbutamol at β₂ (lungs) rather than β₁ (heart)
- Lack of selectivity can lead to unwanted drug effects e.g. fenoterol
- Selectivity for H1 receptors is how current antihistamines work
 e.g. fexofenadine

Antipsychotic Medications


- Typical vs atypical antipsychotics
- Typical
 - Dopamine antagonists
 - e.g. haloperidol
- Atypical
 - Dopamine and 5HT antagonists
 - e.g. quetiapine

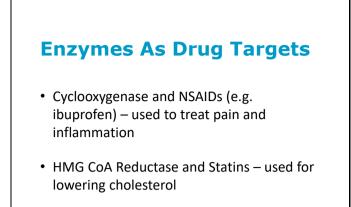

Receptor Plasticity

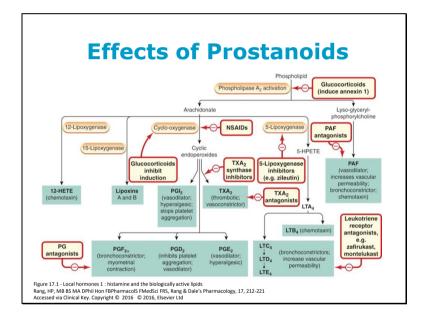
- Receptor states and populations do not remain constant over time
- This plasticity is largely responsible for the changes that occur in effectiveness of chronic drug (or endogenous compound) over time
 - e.g. tolerance, insulin resistance

Regulation of Receptors (Receptor Plasticity)

- Changes in receptor state
 Desensitisation / Exhaustion of mediators
- Changes in receptor populations
 - Up regulation
 - Downregulation

Receptor Population Changes

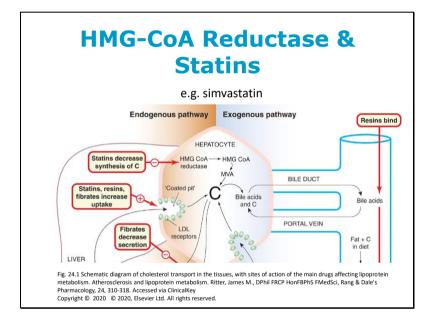

- Chronic <u>agonist</u> administration can lead to <u>DOWN</u> <u>REGULATION</u>
 - Eg chronic salbutamol can cause internalisation of receptors → less receptors available for stimulation → decreased bronchodilation
- Chronic <u>antagonist</u> administration can lead to <u>UP</u> <u>REGULATION</u>
 - Eg chronic propranolol can increase synthesis of β_1 receptors in the heart \rightarrow less antagonism \rightarrow decreased drug effect (increased HR & BP)


Clinical Significance

- Tolerance:
 - Eg morphine, salbutamol
- Adverse Effects:
 - Eg typical antipsychotics are predominantly $\mathrm{D_2}$ antagonists
- Therapeutic Effects – Tricyclic antidepressants

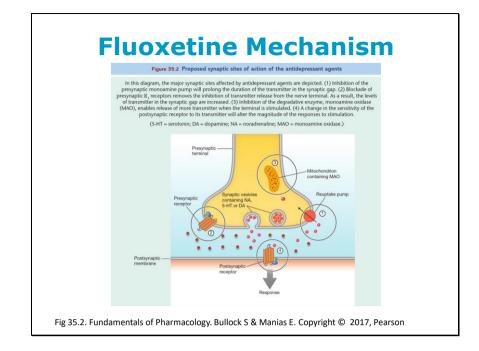
Non-Receptor Protein Targets

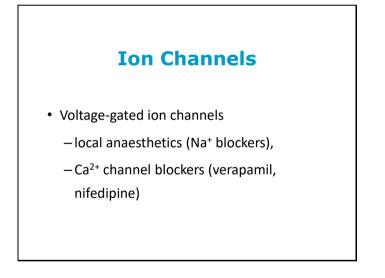
- · Not all drugs act directly at receptors
- Some drugs act at non-receptor protein targets:
 - Enzymes (COX inhibitors)
 - Carrier proteins (TCAs & SSRIs)
 - Ion channels (local anaesthetics)
- Some drugs act at non-protein targets
 - Soluble ligands e.g. inflammatory mediators
 - DNA

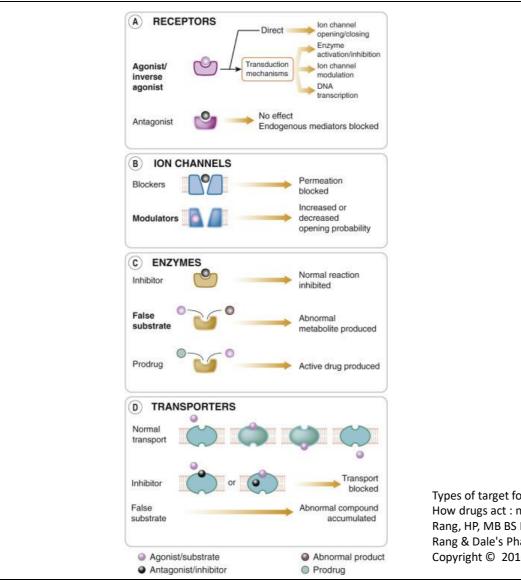

Effects of Cyclooxygenase Inhibition

- NSAID inhibition of both COX 1 and COX 2 leads to:
 - \downarrow inflammation
 - $\bullet \downarrow \mathsf{pain}$
 - $\bullet \downarrow \mathsf{fever}$
 - But also,
 - Reduction in homeostatic pathways involved in:
 - Kidney function (acute renal failure)
 - Maintenance of gastric mucosa (ulcers -

diclofenac, aspirin)

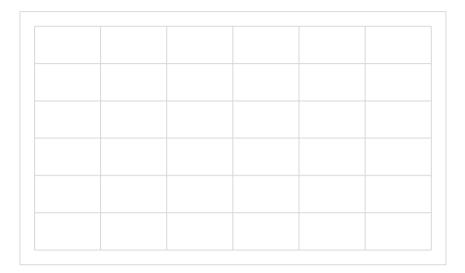

COX 2 Selective Inhibitors


- -coxibs are selective for the inducible enzyme isoform – COX-2
- Greater safety with respect to GI adverse effects, less likelihood of GI bleeds
- Cardiovascular effects



Drugs Which Interact With Carrier Proteins

- Examples: Drugs that act on monoamine neurotransmitter uptake proteins
- Fluoxetine (Prozac) SSRI
- SNRI initially developed from anti-depressant research; used for weight loss and smoking cessation



Types of target for drug action. How drugs act : molecular aspects Rang, HP, MB BS MA DPhil Hon FBPharmacolS FMedSci FRS, Rang & Dale's Pharmacology, 3, 22-49 Copyright © 2016 © 2016, Elsevier Ltd **1.** Drugs most commonly target one of four different classes of protein target. Name the types of protein below and for each type give an example of a specific drug, its target, mechanism of action and therapeutic use (the first example is completed for you)

Class of protein	Example of drug	Specific drug target	Mechanism	Therapeutic Use
1. Ion channel	lidocaine	Na channel	Blocks channel, preventing sodium entry and therefore conduction along nerves	Local anaesthetic
2.				
3.				
4.				

- **2.** Define the following terms and draw a clearly labelled concentration response curve to illustrate each one:
 - a) Partial agonist :

b) Competitive reversible antagonist: