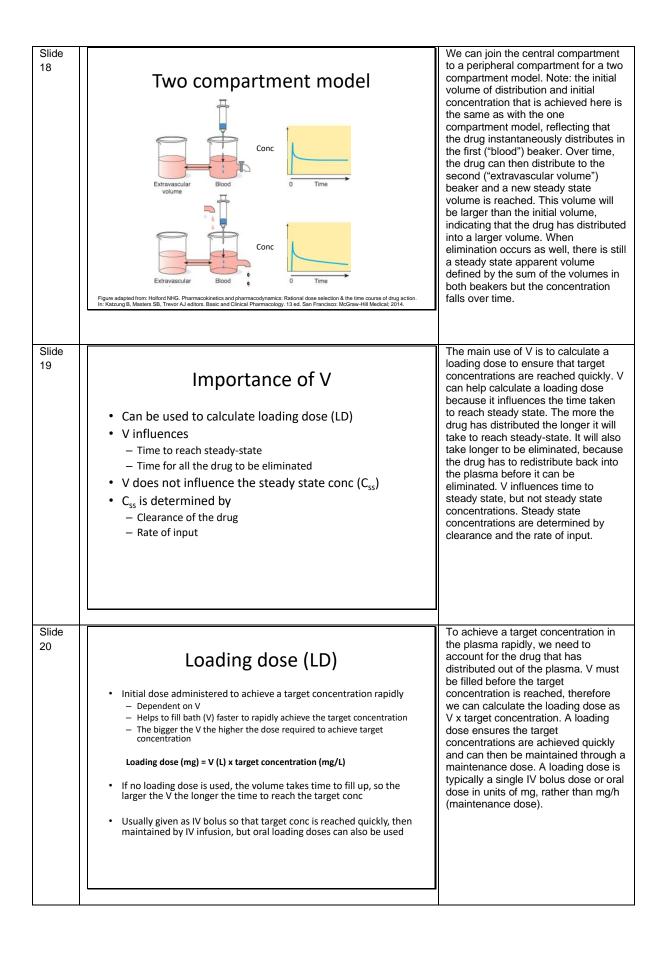

Volume of Distribution MBChB 221B Dr Stephen Jamieson Dept of Pharmacology and Clinical Pharmacology Auckland Cancer Society Research Centre	
Learning objectives	
 Learn the definition of volume of distribution Understand the physiological determinants of volume of distribution Realise the limited relevance of plasma protein binding Be able to describe the time course of drug concentration for one and two compartment pharmacokinetic models Appreciate the applications of volume concepts to clinical practice 	
	Drug distribution is the transfer of drug from the systemic circulation to
Drug distribution	various body compartments or
 The reversible movement of drug between body compartments once it has entered the systemic circulation Influenced by physicochemical properties of drugs Size Ionisation Lipophilicity Plasma protein binding Defined by the parameter known as volume of distribution (V) 	tissues. Most drugs act outside the systemic circulation so need to first distribute to the site of action to have their effect. In order to exit out of blood vessels and widely distribute throughout the body, drugs need to be small, non-ionised, lipophilic and unbound to plasma proteins so that they can cross cell membranes. Volume of distribution or V is the key pharmacokinetic parameter that describes the process of drug distribution.
	MBChB 221B Dr Stephen Jamieson Dept of Pharmacology and Clinical Pharmacology Auckland Cancer Society Research Centre



Slide 10	Red Herring Model Dose (100 mg) Concentration (100 mg/L) $\downarrow \downarrow $	Imagine there are red herrings swimming in the bathwater. When a sample of bathwater is removed it also takes 'red herrings' with it. The concentration of drug will be higher in the sample than in the rest of the bath water because of the higher concentration of drug bound to the 'red herrings'. The 'red herring' effect is caused by drug binding to plasma proteins. A higher concentration in the sample leads to a lower apparent volume of distribution. Based on total drug concentration the apparent volume of distribution will be small when there is extensive binding to plasma proteins.
Slide 11	 V of plasma protein bound drugs Many drugs are highly plasma protein bound e.g. warfarin 99% bound to albumin Plasma concentrations of warfarin Total 1 mg/L Bound 0.99 mg/L Unbound 0.01 mg/L Apparent V for a 10 mg dose of warfarin Total 10 mg / 1 mg/L 10 ng / 0.01 mg/L 	Warfarin is about 99% bound to albumin with only 1% unbound. Based on total warfarin concentrations the apparent volume of distribution is 10 L. But based on unbound concentrations it is 1000 L. The apparent volume will vary according to whether total or unbound drug is used for the calculation. The ideal way to measure drug concentration is in the unbound form since this is the active form of the drug but this method is technically demanding, less precise and often a lot more expensive, so total drug concentrations are generally used. The plasma protein binding fraction usually remains constant, in which case it does not matter if total or unbound concentrations are used.
Slide 12	 Clinical relevance of plasma protein binding Approx 50% of drugs are >90% bound to plasma proteins Unbound drug concentrations are responsible for effect Impact of alteration of plasma protein binding e.g. by displacement with competing drug or through disease Increased elimination of unbound drug No change in steady state unbound drug concentration Only in rare cases can reduction in plasma protein binding due to disease or drug interactions alter clinical response Rapidly cleared IV drugs that are highly plasma protein bound with a narrow therapeutic index 	Many clinically-used drugs are highly bound to plasma proteins. The bound drug remains in the systemic circulation and is pharmacologically inactive, yet there is still sufficient free drug available for the drug to be effective. What happens to these drugs if plasma protein binding is released and more drug becomes available? Is clinical response altered? Only in very rare situations (rapidly cleared IV drugs with a narrow therapeutic index). For most drugs, following displacement from plasma proteins, the extra free drug will be eliminated and there will be no change in the steady state unbound drug concentration and no change in clinical response, although total drug concentrations will be reduced.

Slide 13	 Apparent volume of distribution (V) Reasons why V is not physiological Binding to tissues Binding to plasma proteins Partitioning into tissues Lipophilic drugs into fat e.g. chloroquine May lead to dosing problems in obese patients where fat content is much higher Drug adsorption onto bone e.g. bisphosphonates (alendronic acid) 	Another reason why some drugs have large apparent volumes is because of partitioning rather than binding to tissues, such as partitioning into fat or adsorption onto bone. Partitioning into fat can make the apparent volume of distribution larger in obese people.
Slide 14	 Physiological Basis of V: examples Warfarin: V ≈ 10 L Less than extracellular fluid, larger than plasma volume Highly plasma protein bound Gentamicin: V ≈ 16 L Similar to extracellular fluid Highly ionised, low plasma protein binding 	Warfarin has a very small apparent volume (based on total concentration) because it binds extensively to plasma proteins. It has a big red herring effect. The apparent volume is less than extracellular fluid but larger than plasma volume – an impossible situation for a physical volume of distribution. Gentamicin does not bind to plasma proteins. It is highly ionised and does not cross cell membranes easily. Its apparent volume of distribution is quite close to the physical volume of extracellular fluid. This indicates that it does not bind extensively to tissues.
Slide 15	 Physiological Basis of V: examples Theophylline: V ≈ 35 L Similar to total body water Non-polar, low plasma protein binding Digoxin: V ≈ 500 L Na⁺/K⁺ ATPase binding Muscle, kidney, nervous tissue 	Theophylline is non-polar so is expected to cross cell membranes. Its apparent volume of distribution is close to total body water, which we would expect based on its physico- chemical properties, suggesting that it does not bind extensively to tissues. Digoxin has a very large apparent volume of distribution. It has negligible binding to plasma proteins but high affinity and extensive binding to tissues containing the Na ⁺ /K ⁺ ATPase.

Slide		
21	 Understand the second system of the second	
Slide		
22	Revision questions	
	 Describe the physiochemical properties of theophylline that influence its distribution 	
	 Explain why apparent volume of distribution is not a physiological value, using a drug example 	
	 Describe the impact of plasma protein binding on the clinical activity of warfarin 	