Slide 1	Volume of Distribution MBChB 221B Dr Stephen Jamieson Dept of Pharmacology and Clinical Pharmacology Auckland Cancer Society Research Centre	
Slide 2	 Learning objectives Learn the definition of volume of distribution Understand the physiological determinants of volume of distribution Realise the limited relevance of plasma protein binding Be able to describe the time course of drug concentration for one and two compartment pharmacokinetic models Appreciate the applications of volume concepts to clinical practice 	
Slide 3	 Drug distribution The reversible movement of drug between body compartments once it has entered the systemic circulation Influenced by physicochemical properties of drugs Size Ionisation Lipophilicity Plasma protein binding Defined by the parameter known as volume of distribution (V_D) 	

Slide 13	Apparent volume of distribution (V _D) • Reasons why V _D is not physiological – Binding to tissues – Binding to plasma proteins – Partitioning into tissues • Lipophilic drugs into fat – e.g. thiopental – May lead to dosing problems in obese patients where fat
	content is much higher
Slide 14	 Physiological Basis of V_D: examples Warfarin: V_D ≈ 10 L Less than extracellular fluid, larger than plasma volume Highly plasma protein bound Gentamicin: V_D ≈ 16 L Similar to extracellular fluid Highly ionised, low plasma protein binding
Slide 15	 Physiological Basis of V_D: examples Theophylline: V_D ≈ 35 L Similar to total body water Non-polar, low plasma protein binding Digoxin: V_D ≈ 500 L Na⁺/K⁺ ATPase binding Muscle, kidney, nervous tissue

Slide 19	Distribution rate • Distribution half-life - Minutes • e.g. thiopental - Hours • e.g. digoxin - Days • e.g. lithium	
Slide 20	<u> </u>	
	 Importance of V_D Can be used to calculate loading dose (LD) V_D influences Time to reach steady-state Time for all the drug to be eliminated V_D does not influence the steady state conc (C_{ss}) C_{ss} is determined by Clearance of the drug Rate of input 	
Slide 21		
	Loading dose (LD)	
	 Initial dose administered to achieve a target concentration rapidly Dependent on V_D Helps to fill bath (V_D) faster to rapidly achieve the target concentration The bigger the V_D the higher the dose required to achieve target concentration Loading dose (mg) = V_D (L) x target concentration (mg/L) If no loading dose is used, the volume takes time to fill up, so the larger the V_D the longer the time to reach the target conc Usually given as IV bolus so that target conc is reached quickly, then maintained by IV infusion, but oral loading doses can also be used 	

Slide 22			
	Loading dose calculation		
	 What is the loading dose of theophylline for a patient with asthma to achieve a target concentration of 10 mg/L? V_D of theophylline = 35L Loading dose = 10 mg/L x 35 L = 350 mg 		
	 Maintenance dose was 28 mg/h – CL (L/h) x target conc (mg/L) 		